钼合金粉末冶金研究进展

张强 蔡永丰 李晓静 刘赫雄 张楠 周文元 赖陈 董丽然 王金淑

张强, 蔡永丰, 李晓静, 刘赫雄, 张楠, 周文元, 赖陈, 董丽然, 王金淑. 钼合金粉末冶金研究进展[J]. 粉末冶金技术, 2023, 41(1): 44-54. doi: 10.19591/j.cnki.cn11-1974/tf.2022070002
引用本文: 张强, 蔡永丰, 李晓静, 刘赫雄, 张楠, 周文元, 赖陈, 董丽然, 王金淑. 钼合金粉末冶金研究进展[J]. 粉末冶金技术, 2023, 41(1): 44-54. doi: 10.19591/j.cnki.cn11-1974/tf.2022070002
ZHANG Qiang, CAI Yongfeng, LI Xiaojing, LIU Hexiong, ZHANG Nan, ZHOU Wenyuan, LAI Chen, DONG Liran, WANG Jinshu. Research progress of molybdenum alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 44-54. doi: 10.19591/j.cnki.cn11-1974/tf.2022070002
Citation: ZHANG Qiang, CAI Yongfeng, LI Xiaojing, LIU Hexiong, ZHANG Nan, ZHOU Wenyuan, LAI Chen, DONG Liran, WANG Jinshu. Research progress of molybdenum alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 44-54. doi: 10.19591/j.cnki.cn11-1974/tf.2022070002

钼合金粉末冶金研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2022070002
基金项目: 国家自然科学基金资助项目(52130407)
详细信息
    通讯作者:

    E-mail: laichen1990@163.com (赖陈)

    lrdong@hku.hk (董丽然)

    wangjsh@bjut.edu.cn (王金淑)

  • 中图分类号: TG142.71

Research progress of molybdenum alloys prepared by powder metallurgy

More Information
  • 摘要: 钼及其合金具有优异的高温力学性能,被广泛应用于冶金、机械、化工、航空和核工业等领域。粉末冶金是钼合金的主要制备方法。通过固溶强化、第二相强化、细晶强化等多种强化手段可以提高钼合金的力学性能,从而拓宽钼合金的应用范围。本文介绍了粉末冶金制备钼合金的研究进展,包括粉体制备方法、压制工艺及坯体烧结工艺等,讨论了钼合金的强韧化方法及其机理,并展望了粉末冶金法制备钼合金的发展方向,以期对钼合金的设计和制备提供一些思路。
  • 图  1  TiC和ZrC质量分数对合金室温抗拉强度的影响[54]

    Figure  1.  Effect of the mass fraction of TiC and ZrC on tensile strength of the alloys at room temperature[54]

    图  2  La2O3质量分数对钼合金屈服强度的影响[16]

    Figure  2.  Effect of La2O3 mass fraction on the yield strength of molybdenum alloys[16]

    图  3  细晶强化机制示意图[55]

    Figure  3.  Schematic diagram of the fine-grained strengthening mechanism[55]

    图  4  霍尔佩奇公式中晶粒尺寸和强度的关系[56]

    Figure  4.  Relationship of grain size and strength in Hall-Petch equation[56]

    图  5  钼合金强化贡献的计算[57]

    Figure  5.  Calculated strengthening contribution of the Mo‒La2O3 alloys[57]

    表  1  钼合金的性能和应用

    Table  1.   Properties and applications of the molybdenum alloys

    合金种类主要性能产品或应用
    二元系合金Mo‒Cu导电导热性好、加工性好电子封装材料、电触头材料、散热器
    Mo‒W高温强度高、耐腐蚀锌冶炼炉耐蚀部件
    Mo‒Re低温延展性好热离子交换器、电子元器件
    Mo‒Ti高温强度高、抗蠕变性好航天结构材料、大功率陶瓷管栅极
    Mo‒Zr再结晶温度、高温强度高、蠕变速率低航天结构材料、核工业材料
    Mo‒Hf再结晶温度、高温强度高航天结构材料、核工业材料
    Mo‒Si高温强度高、抗蠕变性好飞机和航空航天工业高温应用
    Mo‒Al2O3高温强度高、再结晶温度高高温喷嘴喷管、穿孔不锈钢管的钼顶头
    Mo‒Ni耐腐蚀合金靶材、常用于酸性环境下
    Mo‒Na耐火度高、高温抗蠕变性能好旋转溅射管形靶材、高温炉板料
    ODS‒Mo高温强度高、抗蠕变性好电源灯丝、核工业材料、电极、坩埚
    多元系合金TZM高温强度高、抗蠕变性好电子管栅极材料、压铸模具
    MHC高温强度高、抗蠕变性好火箭助推器、烧结舟皿
    ZHM高温强度高、低温延展性好高温合金的等温铸造模具
    MWH强度、硬度高、高温性能好、抗烧蚀火箭高温构件、电子管的灯丝、零件
    Mo‒Si‒Al‒K再结晶温度高、塑性好灯脚、芯线丝和支架丝
    Mo‒Si‒B力学性能好、抗氧化飞机和航空航天工业高温应用
    Mo‒W‒Cu高强度、 耐高温和抗烧蚀燃气舵、喉衬等耐烧蚀部件
    注:MHC指Mo‒Hf‒C合金,成分是Mo‒1.2Hf‒0.005C;ZHM指Mo‒Hf‒Zr‒C合金,成分是Mo‒0.5Zr‒1.5Hf‒0.2C;MWH指Mo‒W‒Hf‒C合金,成分是Mo‒23.72W‒1.2Hf‒0.08C。
    下载: 导出CSV
  • [1] Xu J Y, Yang X M, Liu M, et al. State of China molybdenum industry development in 2013. China Molybd Ind, 2014, 38(3): 5

    许洁瑜, 杨晓明, 刘萌, 等. 2013年中国钼工业发展状况. 中国钼业, 2014, 38(3): 5
    [2] Jiang L J, Li L P, Yao Y F, et al. Annual review of molybdenum in 2014. China Molybd Ind, 2015, 39(1): 1 doi: 10.13384/j.cnki.cmi.1006-2602.2015.01.001

    蒋丽娟, 李来平, 姚云芳, 等. 2014年钼业年评. 中国钼业, 2015, 39(1): 1 doi: 10.13384/j.cnki.cmi.1006-2602.2015.01.001
    [3] Wang M, Deng Y S. Global molybdenum market in 2015. China Molybd Ind, 2016, 40(1): 55 doi: 10.13384/j.cnki.cmi.1006-2602.2016.01.013

    王敏, 邓永山. 2015年全球钼市场评述. 中国钼业, 2016, 40(1): 55 doi: 10.13384/j.cnki.cmi.1006-2602.2016.01.013
    [4] Xu B. Study on Microstructure and Properties of High Performance Sintered Molybdenum Materials for Extrusion Dies [Dissertation]. Changsha: Central South University, 2010

    徐兵. 挤压模具用高性能烧结钼材料组织与性能的研究[学位论文]. 长沙: 中南大学, 2010
    [5] Wang J P, Zhang H C, Wang J G, et al. Analysis of global molybdenum resource supply and demand structure and some suggestions. China Min Mag, 2016, 25(Suppl 2): 1 doi: 10.3969/j.issn.1004-4051.2016.z2.001

    王家鹏, 张洪川, 王建国, 等. 全球钼资源供需形势分析及对策建议. 中国矿业, 2016, 25(增刊 2): 1 doi: 10.3969/j.issn.1004-4051.2016.z2.001
    [6] Cheng H Z, Fan J L, Liu T, et al. Preparation and research development of TZM molybdenum alloys. China Molybd Ind, 2008, 32(6): 40 doi: 10.3969/j.issn.1006-2602.2008.06.011

    成会朝, 范景莲, 刘涛, 等. TZM钼合金制备技术及研究进展. 中国钼业, 2008, 32(6): 40 doi: 10.3969/j.issn.1006-2602.2008.06.011
    [7] Wang D H, Yuan X B, Li Z K, et al. Progress of research and application for Mo metal and its alloys. Rare Met Lett, 2006, 25(12): 1

    王东辉, 袁晓波, 李中奎, 等. 钼及钼合金研究与应用进展. 稀有金属快报, 2006, 25(12): 1
    [8] Jia Z C, Lin B T. Progress in increasing low temperature ductility and high temperature oxidation resistance of Mo alloys. Powder Metall Ind, 2009, 19(1): 49 doi: 10.3969/j.issn.1006-6543.2009.01.011

    贾佐诚, 林冰涛. 提高钼合金低温塑性和高温抗氧化性的新进展. 粉末冶金工业, 2009, 19(1): 49 doi: 10.3969/j.issn.1006-6543.2009.01.011
    [9] Zhou T J, Feng W, Zhao H B, et al. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy. Prog Nat Sci Mater Int, 2018, 28(1): 45 doi: 10.1016/j.pnsc.2017.12.003
    [10] Primg S, Clemens H, Knabl W, et al. Orientation dependent recovery and recrystallization behavior of hot-rolled molybdenum. Int J Refract Met Hard Mater, 2015, 48(3): 179
    [11] An G, Sun J, Sun Y J, et al. Preparation and influencing factors of molybdenum targets and magnetron-sputter-deposited molybdenum thin films. Mater Sci Forum, 2018, 913: 853 doi: 10.4028/www.scientific.net/MSF.913.853
    [12] Xue K M, Wang Z, Liu M, et al. Mechanical properties of micro- and nano-scale during high pressure torsion of pure molybdenum. Rare Met Mater Eng, 2019, 48(6): 2033

    薛克敏, 王喆, 刘梅, 等. 纯钼高压扭转过程中微纳尺度的力学性能. 稀有金属材料与工程, 2019, 48(6): 2033
    [13] Chen Z X. Research on development strategy of molybdenum mine in Heilongjiang Province. World Nonferrous Met, 2019(9): 63

    陈忠新. 黑龙江省钼矿发展战略研究. 世界有色金属, 2019(9): 63
    [14] Liu H, Ju J H, Zhang J L, et al. Strengthening and toughening of molybdenum alloy and its development trend. China Molybd Ind, 2011, 35(2): 26 doi: 10.3969/j.issn.1006-2602.2011.02.007

    刘辉, 巨建辉, 张军良, 等. 钼合金的强韧化与发展趋势. 中国钼业, 2011, 35(2): 26 doi: 10.3969/j.issn.1006-2602.2011.02.007
    [15] Ju Y P, Wang A Q. Current research status of Mo alloys. Powder Metall Ind, 2015, 25(4): 58 doi: 10.13228/j.boyuan.issn1006-6543.20150017

    居炎鹏, 王爱琴. 钼合金研究现状. 粉末冶金工业, 2015, 25(4): 58 doi: 10.13228/j.boyuan.issn1006-6543.20150017
    [16] Liu P P, Fan J L, Cheng H C, et al. Effect of La on microstructure and mechanical property of Mo-alloy. Powder Metall Technol, 2009, 27(3): 185

    刘拼拼, 范景莲, 成会朝, 等. 稀土La对钼合金组织和性能的影响. 粉末冶金技术, 2009, 27(3): 185
    [17] Wang L, Sun J, Sun Y J, at al. Effect of doping methods on microstructure and mechanical properties of Mo-La2O3 alloy. Rare Met Mater Eng, 2007, 36(10): 1827 doi: 10.3321/j.issn:1002-185x.2007.10.030

    王林, 孙军, 孙院军, 等. 掺杂方式对Mo-La2O3合金组织和力学性能的影响. 稀有金属材料与工程, 2007, 36(10): 1827 doi: 10.3321/j.issn:1002-185x.2007.10.030
    [18] He H C, Wang K S, Hu P, et al. Effect of lanthanum doping on recrystallization behavior of TZM alloy sheet. Rare Met Mater Eng, 2015, 44(5): 1297

    何欢承, 王快社, 胡平, 等. 掺杂稀土元素镧对TZM合金板材再结晶行为的影响. 稀有金属材料与工程, 2015, 44(5): 1297
    [19] He B H, Yang H L, Ruan J M. Effect of Y2O3 content on microstructure and properties of molybdenum alloy. Mater Sci Eng Powder Metall, 2012, 17(2): 234 doi: 10.3969/j.issn.1673-0224.2012.02.016

    何斌衡, 杨海林, 阮建明. Y2O3含量对钼合金组织和性能的影响. 粉末冶金材料科学与工程, 2012, 17(2): 234 doi: 10.3969/j.issn.1673-0224.2012.02.016
    [20] Zhou M L, Li J, Zuo T Y. Study on the structure and properties of La–Mo wire. Chin J Nonferrous Met, 1994, 4(2): 45 doi: 10.3321/j.issn:1004-0609.1994.02.013

    周美玲, 李俊, 左铁镛. 镧钼丝组织结构和性能的研究. 中国有色金属学报, 1994, 4(2): 45 doi: 10.3321/j.issn:1004-0609.1994.02.013
    [21] Wang J S, Dong L R, Liu W, et al. Progress on RE2O3-Mo/W matrix secondary emitter materials. Sci China Technol Sci, 2017, 60(10): 1439 doi: 10.1007/s11431-017-9040-7
    [22] Wang J S, Zhou M L, Zuo T Y. Advance in rare earth cathode doped refractory metal materials. Mater China, 2009, 28(3): 1

    王金淑, 周美玲, 左铁镛. 稀土难熔金属阴极材料的研究进展. 中国材料进展, 2009, 28(3): 1
    [23] Wang J S, Li B Z, Zhou M L. A study of the emission property and mechanism of La‒Mo cathode. Vac Electron, 2007(6): 5

    王金淑, 李保真, 周美玲. La‒Mo阴极发射性能及机理研究. 真空电子技术, 2007(6): 5
    [24] Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater, 2013, 12(2): 344
    [25] Zhang G J, Liu G, Sun Y J, et al. TEM in situ observation of crack propagation in lanthanum oxide dispersion strengthened molybdenum alloy. Rare Met Mater Eng, 2010, 39(5): 828

    张国君, 刘刚, 孙院军, 等. 氧化镧弥散强化钼合金裂纹扩展的TEM原位观察. 稀有金属材料与工程, 2010, 39(5): 828
    [26] Subramanian R, Shankar P, Kavithaa S, et al. Synthesis of nanocrystalline yttria by sol-gel method. Mater Lett, 2001, 48(6): 342 doi: 10.1016/S0167-577X(00)00324-4
    [27] Dong L R, Li J H, Wang J S, et al. Fabrication and reduction process of dispersive Er2O3 doped Mo super-fine powders comparing with La2O3 doped Mo powders. Powder Technol, 2019, 346: 78 doi: 10.1016/j.powtec.2019.01.073
    [28] Cheng P M, Yang C, Zhang R, et al. Enhancing the high-temperature creep properties of Mo alloys via nanosized La2O3 particle addition. J Mater Sci Technol, 2022, 130: 53 doi: 10.1016/j.jmst.2022.04.043
    [29] Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature. Acta Mater, 2021, 220: 117309 doi: 10.1016/j.actamat.2021.117309
    [30] Zhang D D, Ni F, Xu L J, et al. Effects of doping methods on microstructure and properties of A12O3/MO composite material. Rare Met Cement Carb, 2011, 39(3): 35 doi: 10.3969/j.issn.1004-0536.2011.03.009

    张丹丹, 倪锋, 徐流杰, 等. 掺杂方式对Al2O3/Mo复合材料组织及性能的影响. 稀有金属与硬质合金, 2011, 39(3): 35 doi: 10.3969/j.issn.1004-0536.2011.03.009
    [31] Wang S Q, Ni D Z, Zhang N, Study on production technology of high temperature molybdenum billet. Rare Met Mater Eng, 1998, 27(4): 46

    王思清, 倪德忠, 张楠. 高温钼坯生产工艺研究. 稀有金属材料与工程, 1998, 27(4): 46
    [32] Li D C, An G, Liu G J, et al. Sub-micron MoC powders prepared by high-energy mechanochemistry method. Powder Metall Technol, 2008, 26(3): 205

    李大成, 安耿, 刘高杰, 等. 高能机械化学法制备亚微米MoC粉体. 粉末冶金技术, 2008, 26(3): 205
    [33] Wei S Z, Zhou Y C, Duan S H, et al. Effect of lanthanum oxide content on microstructure and properties of molybdenum plate. J Henan Univ Sci Technol Nat Sci, 2013, 34(2): 1

    魏世忠, 周玉成, 段素红, 等. 氧化镧含量对钼板组织与性能的影响. 河南科技大学学报(自然科学版), 2013, 34(2): 1
    [34] Hu W Q, Sun T, Liu C X, et al. Refined microstructure and enhanced mechanical properties in Mo‒Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering. J Mater Sci Technol, 2021, 88: 36 doi: 10.1016/j.jmst.2021.01.064
    [35] Hu W Q, Wang L, Ma Z Q, et al. Nano Mo‒La‒O particles strengthened Mo alloys fabricated via freeze-drying technology and low temperature sintering. Mater Sci Eng A, 2021, 818: 141448 doi: 10.1016/j.msea.2021.141448
    [36] Cao Q G, Zhao P C, Rong W, et al. Preparation of molybdenum alloy micropowder via spray drying method. Rare Met Mater Eng, 2020, 49(10): 3627

    操齐高, 赵盘巢, 戎万, 等. 喷雾干燥法制备钼合金微粉的研究. 稀有金属材料与工程, 2020, 49(10): 3627
    [37] Xu L J, Wei S Z, Li J W, et al. Preparation, microstructure and properties of molybdenum alloys reinforced by in-situ Al2O3 particles. Int J Refract Met Hard Mater, 2012, 30(1): 208 doi: 10.1016/j.ijrmhm.2011.08.012
    [38] Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382

    赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382
    [39] Dong D, Huang H T, Xiong N, et al. Application of molybdenum and molybdenum alloys in nuclear reactors. China Molybd Ind, 2018, 42(4): 6

    董帝, 黄洪涛, 熊宁, 等. 钼及钼合金在核反应堆中的应用. 中国钼业, 2018, 42(4): 6
    [40] Yu Z T, Wang K S, Hu P, et al. Progress of low oxygen TZM molybdenum alloy. Mater Rep, 2015, 29(1): 92

    于志涛, 王快社, 胡平, 等. 低氧TZM合金研究进展. 材料导报, 2015, 29(1): 92
    [41] Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace. Rare Met Mater Eng, 2011, 40(10): 1871

    郑欣, 白润, 王东辉, 等. 航天航空用难熔金属材料的研究进展. 稀有金属材料与工程, 2011, 40(10): 1871
    [42] Wang C Y, Chang Y, Zhang H L, et al. Effect of ZrO2 content on microstructure and properties of molybdenum alloys. Powder Metall Technol, 2021, 39(5): 429

    王承阳, 常洋, 张林海, 等. 氧化锆含量对钼合金组织和性能的影响. 粉末冶金技术, 2021, 39(5): 429
    [43] Feng P F, Fu J B, Liu R Z, et al. Analysis on time sequence characteristics of occurrence status of lanthanum in Mo alloy wires. Chin J Rare Met, 2011, 35(4): 486 doi: 10.3969/j.issn.0258-7076.2011.04.003

    冯鹏发, 付静波, 刘仁智, 等. La元素在钼合金丝中赋存形式的时序性分析. 稀有金属, 2011, 35(4): 486 doi: 10.3969/j.issn.0258-7076.2011.04.003
    [44] Yang Q L, Meng Q L, Feng P F, et al. Effect of rare-earth Y and Ce on the mechanical properties of Mo alloy. China Molybd Ind, 2012, 36(5): 51 doi: 10.3969/j.issn.1006-2602.2012.05.014

    杨秦莉, 孟庆乐, 冯鹏发, 等. 稀土Y、Ce对钼合金力学性能的影响. 中国钼业, 2012, 36(5): 51 doi: 10.3969/j.issn.1006-2602.2012.05.014
    [45] Cao W C. Effect of Y2O3 doped on the mechanics performance of molybdenum alloys. China Molybd Ind, 2006, 30(3): 40 doi: 10.3969/j.issn.1006-2602.2006.03.012

    曹维成. 氧化钇掺杂对合金烧结钼组织及性能的影响. 中国钼业, 2006, 30(3): 40 doi: 10.3969/j.issn.1006-2602.2006.03.012
    [46] Chen G Q, Zhu D R, Zhan R, et al. Highly dense Mo/Cu composites fabricated by squeeze casting and their thermal conduction properties. Chin J Nonferrous Met, 2005, 15(11): 1864 doi: 10.3321/j.issn:1004-0609.2005.11.039

    陈国钦, 朱德志, 占荣, 等. 挤压铸造法制备高致密Mo/Cu及其导热性能. 中国有色金属学报, 2005, 15(11): 1864 doi: 10.3321/j.issn:1004-0609.2005.11.039
    [47] Zhou H L, Feng K Q, Ke S X, et al. Study on the microwave sintering of the novel Mo‒W‒Cu alloys. J Alloys Compd, 2021, 881: 160584 doi: 10.1016/j.jallcom.2021.160584
    [48] Zhou H L, Feng K Q, Liu Y F. Densification, microstructure, and properties of W‒Mo‒Cu alloys prepared with nano-sized Cu powders via large electric current sintering. Adv Powder Technol, 2022, 33(8): 103703 doi: 10.1016/j.apt.2022.103703
    [49] Lu Y, Yang D L. High-performance ultra-fine grain Mo alloy prepared by SPS sintering. Hot Work Technol, 2021, 50(10): 40

    卢瑶, 杨栋林. SPS烧结制备高性能超细晶钼合金. 热加工工艺, 2021, 50(10): 40
    [50] Li Z F, Tang H P, Liu H Y, et al. Influence of activating element Ni on performance of Mo‒Cu alloy. Mater Sci Eng Powder Metall, 2006, 11(3): 185 doi: 10.3969/j.issn.1673-0224.2006.03.013

    李增峰, 汤慧萍, 刘海彦, 等. 活化元素Ni对Mo‒Cu合金性能的影响. 粉末冶金材料科学与工程, 2006, 11(3): 185 doi: 10.3969/j.issn.1673-0224.2006.03.013
    [51] Lu M Y, Fang J L, Cheng C H, et al. Influence of TiC addition on properties and microstructure of Mo‒Ti alloy. Rare Met Mater Eng, 2010, 39(6): 985

    卢明园, 范景莲, 成会朝, 等. TiC的添加对Mo‒Ti合金性能与组织结构的影响. 稀有金属材料与工程, 2010, 39(6): 985
    [52] Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical rhenium alloys. Metall Mater Trans A, 2006, 37(10): 2955 doi: 10.1007/s11661-006-0177-9
    [53] Cao W C, Liu J, Ren Y X. Effect of doping different trace elements on properties of molybdenum materials. Rare Met Lett, 2006, 25(8): 29

    曹维成, 刘静, 任宜霞. 掺杂不同微量元素对钼材性能的影响. 稀有金属快报, 2006, 25(8): 29
    [54] Fan J L, Qian Z, Cheng H Z, et al. Effect of trace TiC/ZrC on property and microstructure of TZM alloy at room and high temperature. Rare Met Mater Eng, 2013, 42(4): 853 doi: 10.3969/j.issn.1002-185X.2013.04.041

    范景莲, 钱昭, 成会朝, 等. 微量TiC/ZrC对TZM合金室温及高温性能与组织的影响. 稀有金属材料与工程, 2013, 42(4): 853 doi: 10.3969/j.issn.1002-185X.2013.04.041
    [55] Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 2009, 324: 349 doi: 10.1126/science.1159610
    [56] Zhou Y H, Hu P, Chang T, et al. Research progress of strengthening and toughening modes and mechanisms of molybdenum alloys. J Funct Mater, 2018, 49(1): 1026

    周宇航, 胡平, 常恬, 等. 钼合金强韧化方式及机理研究进展. 功能材料, 2018, 49(1): 1026
    [57] Chen X, Li B, Wang T, et al. Strengthening mechanisms of Mo‒La2O3 alloys processed by solid-solid doping and vacuum hot-pressing sintering. Vacuum, 2018, 152: 70 doi: 10.1016/j.vacuum.2018.03.012
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  177
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回