球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响

吴开霞 查五生 陈秀丽 万海毅 安旭光

吴开霞, 查五生, 陈秀丽, 万海毅, 安旭光. 球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响[J]. 粉末冶金技术, 2023, 41(4): 338-344. doi: 10.19591/j.cnki.cn11-1974/tf.2022110014
引用本文: 吴开霞, 查五生, 陈秀丽, 万海毅, 安旭光. 球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响[J]. 粉末冶金技术, 2023, 41(4): 338-344. doi: 10.19591/j.cnki.cn11-1974/tf.2022110014
WU Kaixia, ZHA Wusheng, CHEN Xiuli, WAN Haiyi, AN Xuguang. Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys[J]. Powder Metallurgy Technology, 2023, 41(4): 338-344. doi: 10.19591/j.cnki.cn11-1974/tf.2022110014
Citation: WU Kaixia, ZHA Wusheng, CHEN Xiuli, WAN Haiyi, AN Xuguang. Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys[J]. Powder Metallurgy Technology, 2023, 41(4): 338-344. doi: 10.19591/j.cnki.cn11-1974/tf.2022110014

球磨时间对ZrC‒FeCrAl粉末特性及合金力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2022110014
详细信息
    通讯作者:

    E-mail: 3212249282@qq.com

  • 中图分类号: TL341; TB333

Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys

More Information
  • 摘要: 为进一步提高FeCrAl合金的力学性能,采用机械球磨和放电等离子烧结(spark plasma sintering,SPS)技术制备了纳米ZrC颗粒弥散强化FeCrAl(ZrC‒FeCrAl)合金,通过扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、氧含量分析、粒度分析、X射线衍射(X-ray diffraction,XRD)分析、硬度测试、拉伸性能测试等方法,研究了球磨时间对粉末特性及合金力学性能的影响。结果表明,延长球磨时间有利于粉末颗粒细化,但氧含量过高会导致烧结材料力学性能恶化。当球磨时间为30 h时,粉末平均粒径为72.88 μm,氧含量最低,为0.14%(质量分数);球磨30 h的ZrC‒FeCrAl合金具有较好的力学性能,其放电等离子烧结样品的极限抗拉强度、延伸率和维氏硬度分别为1046 MPa、12.1%和HV 349.9。结果证实,添加纳米ZrC可以有效强化FeCrAl合金,为其在耐事故燃料包壳材料中的应用提供了数据支撑。
  • 图  1  拉伸试样尺寸示意图(单位:mm)

    Figure  1.  Dimension diagram of the tensile specimen (unit: mm)

    图  2  不同球磨时间粉末显微形貌:(a)0 h;(b)20 h;(c)30 h;(d)40 h

    Figure  2.  SEM images of the powders at different milling time: (a) 0 h; (b) 20 h; (c) 30 h; (d) 40 h

    图  3  不同球磨时间粉末的平均粒径

    Figure  3.  Average particle size of powders at different milling times

    图  4  不同球磨时间粉末氧质量分数

    Figure  4.  Oxygen mass fraction of the powders at different milling times

    图  5  原始FeCrAl粉末和不同球时间ZrC-FeCrAl粉末X射线衍射图谱

    Figure  5.  XRD patterns of the as-received FeCrAl powders and the ZrC-FeCrAl powders milled for the different time

    图  6  不同球磨时间下ZrC‒FeCrAl合金样品的维氏硬度

    Figure  6.  Vickers hardness of the ZrC‒FeCrAl alloy samples at different milling times

    图  7  不同球磨时间下ZrC‒FeCrAl合金样品的室温拉伸性能

    Figure  7.  Tensile properties of the ZrC‒FeCrAl alloy samples at different milling time at room temperature

    图  8  不同球磨时间下ZrC‒FeCrAl合金样品拉伸断口形貌:(a)0 h;(b)20 h;(c)30 h;(d)40 h

    Figure  8.  SEM images of tensile fracture surface of the ZrC‒FeCrAl alloy samples at different milling times: (a) 0 h; (b) 20 h; (c) 30 h; (d) 40 h

    图  9  球磨30 h的ZrC‒FeCrAl合金透射电镜形貌

    Figure  9.  TEM image of the ZrC‒FeCrAl alloys for 30 h milling

    图  10  纳米ZrC颗粒透射电镜相貌及能谱分析

    Figure  10.  TEM image and EDS pattern of the nano ZrC particles

    表  1  FeCrAl粉末化学成分(质量分数)

    Table  1.   Chemical compositions of the FeCrAl powders %

    材料FeCrAlMoCNO
    FeCrAl13.174.101.860.010.030.04
    下载: 导出CSV

    表  2  不同球磨时间Fe(Cr)(110)峰位、晶格常数及半高宽

    Table  2.   Peak position, lattice constant, and full width at half maximum of Fe (Cr)(110) at different milling time

    材料 时间 / h 峰位 / (°) 晶格常数 / Å 半高宽 / (°)
    FeCrAl044.3862.88390.192
    ZrC−FeCrAl2044.3772.88630.351
    3044.3532.88650.359
    4044.3492.88660.389
    下载: 导出CSV

    表  3  不同球磨时间下烧结ZrC‒FeCrAl合金样品的密度和相对密度

    Table  3.   Density and relative density of the sintered ZrC−FeCrAl alloy samples at different milling times

    球磨时间 / h密度 / (g·cm‒3)相对密度 / %
    07.3099.7 
    207.2899.4
    307.2999.6
    407.2799.3
    下载: 导出CSV

    表  4  图8(d)中点1和2能谱分析

    Table  4.   EDS analysis of point 1 and 2 in Fig. 8(d)

    测试点 元素 原子数分数 / % 质量分数 / %
    1Fe78.9280.64
    Cr19.5818.62
    Al1.500.74
    2Fe50.3566.74
    Cr12.2315.09
    Al13.148.41
    O15.655.94
    Mo0.521.19
    Si0.850.57
    C7.262.06
    下载: 导出CSV
  • [1] Jia W Q, Liu X B, Xu C L, et al. Research progress on FeCrAl alloys used for nuclear fuel cladding prepared by powder metallurgy. Powder Metall Technol, 2022, 40(1): 22

    贾文清, 刘向兵, 徐超亮, 等. 粉末冶金法制备核燃料包壳FeCrAl合金研究进展. 粉末冶金技术, 2022, 40(1): 22
    [2] Duan Z, Yang H, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl Eng Des, 2017, 316: 131 doi: 10.1016/j.nucengdes.2017.02.031
    [3] Pint B A, Unocic K A, Terrani K A. Effect of steam on high temperature oxidation behaviour of alumina-forming alloys. Mater High Temp, 2015, 32(1-2): 28 doi: 10.1179/0960340914Z.00000000058
    [4] Kögler R, Anwand W, Richter A, et al. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy. J Nucl Mater, 2012, 427(1-3): 133 doi: 10.1016/j.jnucmat.2012.04.029
    [5] Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. J Nucl Mater, 2013, 440(1-3): 420 doi: 10.1016/j.jnucmat.2013.05.047
    [6] Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges. J Nucl Mater, 2018, 501: 13 doi: 10.1016/j.jnucmat.2017.12.043
    [7] Wan H Y, Wang H, Zha W S, et al. Research progress of FeCrAl cladding materials strengthened by particles for ATF. Nucl Power Eng, 2020, 41(6): 80 doi: 10.13832/j.jnpe.2020.06.0080

    万海毅, 王辉, 查五生, 等. ATF用颗粒增强FeCrAl包壳材料的研究进展. 核动力工程, 2020, 41(6): 80 doi: 10.13832/j.jnpe.2020.06.0080
    [8] Dou P, Kimura A, Okuda T, et al. Polymorphic and coherency transition of Y–Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel. Acta Mater, 2011, 59(3): 992 doi: 10.1016/j.actamat.2010.10.026
    [9] Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater, 2011, 417(1-3): 176 doi: 10.1016/j.jnucmat.2010.12.300
    [10] Gong M, Zhou Z, Hu H, et al. Effects of aluminum on microstructure and mechanical behavior of 14Cr–ODS steels. J Nucl Mater, 2015, 462: 502 doi: 10.1016/j.jnucmat.2014.12.079
    [11] Ding R, Wang H, Jiang Y, et al. Effects of ZrC addition on the microstructure and mechanical properties of Fe−Cr−Al alloys fabricated by spark plasma sintering. J Alloys Compd, 2019, 805: 1025 doi: 10.1016/j.jallcom.2019.07.181
    [12] Wan H, An X, Kong Q, et al. Fabrication of ultrafine grained FeCrAl−0.6wt.% ZrC alloys with enhanced mechanical properties by spark plasma sintering. Adv Powder Technol, 2021, 32(5): 1380
    [13] Oh J M, Hong C I, Lim J W. Comparison of deoxidation capability on the specific surface area of irregular titanium powder using calcium reductant. Adv Powder Technol, 2019, 30(1): 1 doi: 10.1016/j.apt.2018.08.023
    [14] Zhang M, Cheng Z, Li J, et al. Study on microstructure and mechanical properties of WC−10Ni3Al cemented carbide prepared by different ball-milling suspension. Materials, 2019, 12(14): 2224 doi: 10.3390/ma12142224
    [15] Chen C L, Dong Y M. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe–Cr–Al ODS alloys. Mater Sci Eng A, 2011, 528(29-30): 8374 doi: 10.1016/j.msea.2011.08.041
    [16] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46(1-2): 1 doi: 10.1016/S0079-6425(99)00010-9
    [17] Zhu W, Zhao C, Zhang Y, et al. Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry. Acta Mater, 2020, 188: 697 doi: 10.1016/j.actamat.2020.02.039
    [18] Ponhan K, Tassenberg K, Weston D, et al. Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg−SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling. Ceram Int, 2020, 46(17): 26956 doi: 10.1016/j.ceramint.2020.07.173
    [19] Menapace C, Cipolloni G, Hebda M, et al. Spark plasma sintering behaviour of copper powders having different particle sizes and oxygen contents. Powder Technol, 2016, 291: 170 doi: 10.1016/j.powtec.2015.12.020
    [20] Xu H, Lu Z, Jia C, et al. Influence of mechanical alloying time on morphology and properties of 15Cr-ODS steel powders. High Temp Mater Processes, 2016, 35(5): 473 doi: 10.1515/htmp-2014-0229
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  49
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回