激光增材制造多孔GH4169高温合金孔结构与性能研究

梁加淼 白肖承体 许炯恺 张亮 吴文恒 王俊

梁加淼, 白肖承体, 许炯恺, 张亮, 吴文恒, 王俊. 激光增材制造多孔GH4169高温合金孔结构与性能研究[J]. 粉末冶金技术, 2023, 41(4): 356-362, 371. doi: 10.19591/j.cnki.cn11-1974/tf.2023010002
引用本文: 梁加淼, 白肖承体, 许炯恺, 张亮, 吴文恒, 王俊. 激光增材制造多孔GH4169高温合金孔结构与性能研究[J]. 粉末冶金技术, 2023, 41(4): 356-362, 371. doi: 10.19591/j.cnki.cn11-1974/tf.2023010002
LIANG Jiamiao, BAI Xiaochengti, XU Jiongkai, ZHANG Liang, WU Wenheng, WANG Jun. Pore structure and performance of porous GH4169 superalloys preparedby laser additive manufacturing[J]. Powder Metallurgy Technology, 2023, 41(4): 356-362, 371. doi: 10.19591/j.cnki.cn11-1974/tf.2023010002
Citation: LIANG Jiamiao, BAI Xiaochengti, XU Jiongkai, ZHANG Liang, WU Wenheng, WANG Jun. Pore structure and performance of porous GH4169 superalloys preparedby laser additive manufacturing[J]. Powder Metallurgy Technology, 2023, 41(4): 356-362, 371. doi: 10.19591/j.cnki.cn11-1974/tf.2023010002

激光增材制造多孔GH4169高温合金孔结构与性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2023010002
基金项目: 国家重点研发计划资助项目(2022YFB3404001)
详细信息
    通讯作者:

    E-mail: jmliang@sjtu.edu.cn

  • 中图分类号: TF124

Pore structure and performance of porous GH4169 superalloys preparedby laser additive manufacturing

More Information
  • 摘要: 利用选区激光熔化技术制备出具有不同孔隙结构的多孔GH4169高温合金材料,对制备样品进行扫描电镜观察以及毛细曲线和压缩应力应变曲线测试,系统研究了孔结构对多孔材料毛细抽吸性能及压缩力学性能的影响。结果表明,随着激光功率从285 W减小到160 W,多孔高温合金样品总孔隙率从3.5%增加到46.1%;随着开孔率从15.6%增加到21.7%,多孔高温合金样品的毛细抽吸速度从4.44 mg/(s·cm3)增加到6.56 mg/(s·cm3),毛细抽吸质量从91.3 mg/cm3下降到81.7 mg/cm3,毛细抽吸质量的减少可能与样品孔径增大导致毛细力下降有关。孔隙率增加也导致多孔材料样品弹性模量从53 GPa减小到11 GPa,弹性极限从768 MPa减小到217 MPa,孔材料样品均展现出较好的抗压缩变形能力。
  • 图  1  GH4169高温合金粉末粒径分布(a)及显微形貌(b)

    Figure  1.  Particle size distribution (a) and SEM images (b) of the GH4169 powders

    图  2  激光增材制造多孔GH4169高温合金样品外观:(a)S1;(b)S2;(c)S3;(d)S4;(e)S5

    Figure  2.  Appearance of the porous GH4169 superalloy specimens produced by laser additive manufacturing: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5

    图  3  毛细抽吸实验的实验装置示意图

    Figure  3.  Schematic diagram of the capillary pumping experiment device

    图  4  激光增材制造多孔GH4169高温合金样品显微形貌:(a)S1;(b)S2;(c)S3;(d)S4;(e)S5

    Figure  4.  SEM images of the porous GH4169 superalloy specimens produced by laser additive manufacturing: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5

    图  5  激光增材制造多孔GH4169高温合金样品孔径分布:(a)S1;(b)S2;(c)S3;(d)S4;(e)S5

    Figure  5.  Pore size distribution of the porous GH4169 superalloy specimens produced by laser additive manufacturing: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5

    图  6  激光增材制造多孔GH4169高温合金样品毛细抽吸曲线

    Figure  6.  Capillary pumping curves of the porous GH4169 superalloy specimens produced by laser additive manufacturing

    图  7  激光增材制造多孔GH4169高温合金样品压缩性能:(a)压缩应力应变曲线;(b)压缩性能随孔隙率变化曲线

    Figure  7.  Compression performance of the porous GH4169 superalloy specimens produced by laser additive manufacturing: (a) compression stress-strain curves; (b) changes of compression performance with porosity

    图  8  激光增材制造多孔GH4169高温合金样品压缩变形前和变形后形貌:(a)变形前;(b)变形后S1;(c)变形后S2;(d)变形后S3;(e)变形后S4;(f)变形后S5

    Figure  8.  Morphologies of the porous GH4169 superalloy specimens produced by laser additive manufacturing before and after compression deformation: (a) before compression deformation; (b) S1 after compression deformation; (c) S2 after compression deformation; (d) S3 after compression deformation; (e) S4 after compression deformation; (f) S5 after compression deformation

    表  1  GH4169合金粉末化学成分(质量分数)

    Table  1.   Chemical composition of the GH4169 alloy powders %

    NiFeCrMoNbTiAlCu其他
    53.7016.3019.203.124.950.980.620.30<1.00
    下载: 导出CSV

    表  2  多孔GH4169高温合金样品激光增材制造工艺参数

    Table  2.   Laser additive manufacturing process parameters for the porous GH4169 superalloy specimens

    样品编号激光功率 / W扫描速率 / (mm·s−1)扫描间隔 / s
    S12859600.25
    S22859600.35
    S32009600.25
    S41809600.25
    S51609600.25
    下载: 导出CSV

    表  3  激光增材制造多孔GH4169高温合金样品密度及孔隙率

    Table  3.   Density and porosity of the porous GH4169 superalloy specimens produced by laser additive manufacturing

    样品编号 密度 / (g·cm−3) 总孔隙率 / % 开孔率 / %
    S1 7.95 3.5 0.3
    S2 7.52 8.7 0.8
    S3 7.23 12.2 1.4
    S4 5.21 36.8 15.6
    S5 4.44 46.1 21.7
    下载: 导出CSV

    表  4  激光增材制造多孔GH4169高温合金样品毛细性能

    Table  4.   Capillary performance of the porous GH4169 superalloy specimens produced by laser additive manufacturing

    样品编号抽吸速度 / [mg·(s·cm3)−1]单位体积抽吸质量 / (mg·cm−3)
    S44.4491.3
    S56.5681.7
    下载: 导出CSV

    表  5  激光增材制造多孔GH4169高温合金样品压缩性能

    Table  5.   Compression performance of the porous GH4169 superalloy specimens produced by laser additive manufacturing

    样品编号弹性模量 / GPa弹性极限 / MPa
    S183±4768±21
    S257±2508±14
    S345±5413±23
    S416±2221±19
    S511±1217±12
    下载: 导出CSV
  • [1] Bai B H. Investigation of Heat Transfer Enhancement by Flow Phase Change in High Temperature Heat Pipe [Dissertation]. Beijing: North China Electric Power University, 2021

    白冰鹤. 高温热管内部流动相变强化传热研究[学位论文]. 北京: 华北电力大学, 2021
    [2] Liu D H, Zheng X P, Wang F, et al. Heat conduction and thermal protection mechanism of heat pipe cooled thermal protection structures. J Tsinghua Univ Sci Technol, 2010, 50(7): 1094

    刘冬欢, 郑小平, 王飞, 等. 内置高温热管热防护结构的传热防热机理. 清华大学学报(自然科学版), 2010, 50(7): 1094
    [3] Li F. Dredging Thermal Protection. Beijing: China Aerospace Press, 2017

    李锋. 疏导式热防护. 北京: 中国宇航出版社, 2017
    [4] Chen L Z, Ou D B. Elementary research on the application of high temperature heat-pipe to the thermal protection. J Exp Fluid Mech, 2010, 24(1): 51 doi: 10.3969/j.issn.1672-9897.2010.01.010

    陈连忠, 欧东斌. 高温热管在热防护中应用初探. 实验流体力学, 2010, 24(1): 51 doi: 10.3969/j.issn.1672-9897.2010.01.010
    [5] Ding L, Zhang H, Xu H, et al. Startup characteristics of high temperature heat pipe in solar power receiver. J Nanjing Univ Technol Nat Sci, 2009, 31(5) : 79

    丁莉, 张红, 许辉, 等. 太阳能接收器中高温热管启动性能. 南京工业大学学报(自然科学版), 2009, 31(5): 79
    [6] Liu X, Tian Z X, Wang C L, et al. Experimental study on heat transfer performance of high temperature potassium heat pipe. Nucl Power Eng, 2020, 41(Suppl 1): 106

    刘逍, 田智星, 王成龙, 等. 高温热管传热特性实验研究. 核动力工程, 2020, 41(增刊1): 106
    [7] Niu T, Zhang Y L, Hou H L, et al. Properties of high-temperature heat pipe and tts experimental. Acta Aeronaut Astronaut Sin, 2016, 37(Suppl 1): S59

    牛涛, 张艳苓, 侯红亮, 等. 高温热管性能分析与试验. 航空学报, 2016, 37(增刊1): S59
    [8] Yu P, Zhang H, Xu H, et al. Startup performance of high-temperature sodium heat pipe with triangularg groove wick. J Nanjing Univ Technol Nat Sci, 2015, 37: 99

    于萍, 张红, 许辉, 等. 三角沟槽高温钠热管的启动性能. 南京工业大学学报(自然科学版), 2015, 37: 99
    [9] Shen Y, Zhang H, Xu H, et al. Heat transfer characteristics of high temperature heat pipe with triangular grooved wick under variable heat fluxes. CIESC J, 2014, 65: 3830 doi: 10.3969/j.issn.0438-1157.2014.10.012

    沈妍, 张红, 许辉, 等. 三角沟槽高温热管变热流传热特性. 化工学报, 2014, 65: 3830 doi: 10.3969/j.issn.0438-1157.2014.10.012
    [10] He D, Wang L, Liu R T, et al. Pore characteristic and performance of sintered copper-based porous wicks. Mater Sci Eng Powder Metall, 2018, 23(4): 389 doi: 10.3969/j.issn.1673-0224.2018.04.008

    何达, 汪琳, 刘如铁, 等. 烧结铜基多孔毛细芯的孔隙特征及性能. 粉末冶金材料科学与工程, 2018, 23(4): 389 doi: 10.3969/j.issn.1673-0224.2018.04.008
    [11] Kumar P, Wangaskar B, Khandekar S, et al. Thermal-fluidic transport characteristics of bi-porous wicks for potential loop heat pipe systems. Exp Therm Fluid Sci, 2018, 94: 355 doi: 10.1016/j.expthermflusci.2017.12.003
    [12] Li Q, Gan X P, Li Z Y, et al. Fabrication and mechanical properties of porous Ni wicks. Mater Sci Eng Powder Metall, 2018, 23(4): 361

    黎强, 甘雪萍, 李志友, 等. 多孔镍毛细芯的制备及其力学性能. 粉末冶金材料科学与工程, 2018, 23(4): 361
    [13] Deng D X, Tang Y, Huang G H, et al. Characterization of capillary performance of composite wicks for two-phase heat transfer devices. Int J Heat Mass Trans, 2013, 56(1-2): 283 doi: 10.1016/j.ijheatmasstransfer.2012.09.002
    [14] Zhao H J, Lu Z L, Cao J W, et al. Preparation and mechanical properties of oriented porous GH3536. Rare Met Mater Eng, 2020, 49(5): 1694

    赵洪炯, 鲁中良, 曹继伟, 等. 定向多孔GH3536制备及其学性能. 稀有金属材料与工程, 2020, 49(5): 1694
    [15] Mi G F, Liu X Y, Li H Y, et al. Research on the structure and mechanical properties of Ni−Cr−Co−W−Mo−Al−Ti porous superalloy. Powder Metall Technol, 2007, 25(5): 329

    米国发, 刘翔宇, 李红宇, 等. Ni−Cr−Co−W−Mo−Al−Ti合金制备多孔材料的组织与性能研究. 粉末冶金技术, 2007, 25(5): 329
    [16] Zhou F, Zhou Y, Jiang M, et al. Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction. Mater Lett, 2020, 272: 127831 doi: 10.1016/j.matlet.2020.127831
    [17] Jafari D, Wits W W, Geurts B J. Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis. Appl Therm Eng, 2018, 143: 403 doi: 10.1016/j.applthermaleng.2018.07.111
    [18] Esarte J, Blanco J M, Bernardini A, et al. Optimizing the design of a two-phase cooling system loop heat pipe: Wick manufacturing with the 3D selective laser melting printing technique and prototype testing. Appl Therm Eng, 2017, 111: 407 doi: 10.1016/j.applthermaleng.2016.09.123
    [19] Taylor S L, Shah R N, Dunand D C. Ni−Mn−Ga micro-trusses via sintering of 3D-printed inks containing elemental powders. Acta Mater, 2018, 143: 20 doi: 10.1016/j.actamat.2017.10.002
    [20] Mooraj S, Welborn S S, Jiang S Y, et al. Three-dimensional hierarchical nanoporous copper via direct ink writing and dealloying. Scripta Mater, 2020, 177: 146 doi: 10.1016/j.scriptamat.2019.10.013
    [21] Zhu M, Yang Q, Wang B, et al. Effect of laser parameters on powders melting behavior in off-axis laser cladding process. Laser Optoelectron Prog, 2023, 60(1): 294

    朱明, 杨骞, 王博, 等. 激光参数对旁轴送粉激光熔覆粉末熔化行为的影响. 激光与光电子学进展, 2023, 60(1): 294
    [22] Li J, Liu T T, Liao W H, et al. Study on forming characteristics and defects of GH3536 superalloy by selective laser melting. Chin J Lasers, DOI: 10.3788/CJL221084

    李军, 刘婷婷, 廖文和, 等. 激光选区熔化GH3536高温合金成形特征与缺陷研究. 中国激光, DOI: 10.3788/CJL221084
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  92
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-19
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回