紧耦合气雾化制备热喷涂NiCrAlY合金粉

王峻 周欣 杜仲 赵虹淳 张保红 熊宁

王峻, 周欣, 杜仲, 赵虹淳, 张保红, 熊宁. 紧耦合气雾化制备热喷涂NiCrAlY合金粉[J]. 粉末冶金技术, 2023, 41(3): 225-233. doi: 10.19591/j.cnki.cn11-1974/tf.2023040005
引用本文: 王峻, 周欣, 杜仲, 赵虹淳, 张保红, 熊宁. 紧耦合气雾化制备热喷涂NiCrAlY合金粉[J]. 粉末冶金技术, 2023, 41(3): 225-233. doi: 10.19591/j.cnki.cn11-1974/tf.2023040005
WANG Jun, ZHOU Xin, DU Zhong, ZHAO Hongchun, ZHANG Baohong, XIONG Ning. Thermal spraying NiCrAlY alloy powders prepared by close-coupled gas atomization[J]. Powder Metallurgy Technology, 2023, 41(3): 225-233. doi: 10.19591/j.cnki.cn11-1974/tf.2023040005
Citation: WANG Jun, ZHOU Xin, DU Zhong, ZHAO Hongchun, ZHANG Baohong, XIONG Ning. Thermal spraying NiCrAlY alloy powders prepared by close-coupled gas atomization[J]. Powder Metallurgy Technology, 2023, 41(3): 225-233. doi: 10.19591/j.cnki.cn11-1974/tf.2023040005

紧耦合气雾化制备热喷涂NiCrAlY合金粉

doi: 10.19591/j.cnki.cn11-1974/tf.2023040005
详细信息
    通讯作者:

    E-mail: wangjun1971@atmcn.com

  • 中图分类号: TG132.3+2

Thermal spraying NiCrAlY alloy powders prepared by close-coupled gas atomization

More Information
  • 摘要: 采用紧耦合气雾化技术制备热喷涂NiCrAlY合金粉末,对NiCrAlY合金粉末的物理性能、粒度分布、粉末形貌、微观结构和物相组成等进行了分析。结果表明,粉末以球形和近球形颗粒为主,85%粉末粒径小于150 μm。粉末显微组织主要由树枝晶和胞状晶组成,粒径25~250 μm的粉末凝固冷速大约在4000~67000 K·s−1。粒径尺寸小于50 μm的粉末内部结构致密,少量尺寸大于50 μm的颗粒内部出现凝固缩孔和空心缺陷。粉末晶界和晶内存在Y、Si元素偏析,粉末物相结构主要由γ'-Ni3Al、γ-Ni固溶体相组成。
  • 图  1  紧耦合超音速气雾化喷咀结构图[6]

    Figure  1.  Configuration of a closed-coupled supersonic atomization nozzle[6]

    图  2  NiCrAlY合金粉的粒度分布

    Figure  2.  Cumulative particle size distribution (volume fraction) and the particle size of the NiCrAlY powders

    图  3  不同粒度NiCrAlY合金粉显微形貌:(a)<20 μm;(b)25~38 μm;(c)45~90 μm;(d)120~200 μm

    Figure  3.  SEM images of the NiCrAlY powders with the different particle size: (a) <20 μm; (b) 25~38 μm; (c) 45~90μm; (d) 120~200 μm

    图  4  不同粒度NiCrAlY合金粉末断面显微组织:(a)250 μm;(b)160 μm;(c)80 μm;(d)30 μm

    Figure  4.  Cross-section microstructure of NiCrAlY powders with different particle size: (a) 250 μm; (b) 160 μm; (c) 80 μm; (d) 30 μm

    图  5  粒径为45~106 μm的NiCrAlY粉末断面扫描电镜背散射电子形貌:(a)粉末显微组织;(b)无缺陷颗粒;(c)凝固缩孔颗粒;(d)空心颗粒

    Figure  5.  SEM-BSE images of the NiCrAlY powders in the cross-section with the particle size of 45~106 μm: (a) overall microstructure of the powders; (b) featureless structure powder; (c) solidification shrinkage; (d) hollow defects

    图  6  NiCrAlY合金粉末断面能谱分析

    Figure  6.  EDS mapping of the NiCrAlY powders in the cross-section

    图  7  NiCrAlY粉末内部凝固组织和元素能谱分析:(a)粒径为120 μm左右的粉末颗粒;(b)图7(a)中B点能谱分析;(c)图7(a)中C点能谱分析

    Figure  7.  Solidification microstructure and EDS spectrum of the NiCrAlY powders: (a) microstructure of powders with the particle size of 120 μm; (b) EDS spectrum of spot B in Fig.7(a); (c) EDS spectrum of spot C in Fig.7(a)

    图  8  不同粒度NiCrAlY粉末X射线衍射图谱

    Figure  8.  XRD patterns of the NiCrAlY powders with the different particle sizes

    表  1  不同粒径NiCrAlY合金粉的物理性能

    Table  1.   Physics properties of the NiCrAlY powders with the different particle sizes

    粒径 / μm松装密度 / (g·cm−3)流动性 / [s·(50g)−1]质量分数 / %
    ON
    106~2974.08918.500.00780.0043
    45~1064.06317.370.00570.0045
    25~383.8500.02310.0047
    下载: 导出CSV

    表  2  不同粒度NiCrAlY粉末的晶间距和冷速

    Table  2.   Grain spacing and cooling rate of the NiCrAlY powders with different particle sizes

    粉末粒度 / μm晶间距 / μm颗粒冷速 / (K·s−1)
    251.53.1444020
    145.92.4568400
    72.91.50037000
    40.61.35051000
    25.51.22967000
    下载: 导出CSV

    表  3  图7(a)中各点能谱分析

    Table  3.   EDS analysis of each spots in Fig.7(a)

    位置质量分数 / %
    AlSiYCrMnNi
    能谱面扫A6.420.570.4828.0664.47
    晶内B9.050.210.2927.1563.30
    晶界C5.631.021.6527.020.7563.93
    晶间D6.650.670.5827.740.3963.96
    名义含量7.820.320.5725.7065.59
    下载: 导出CSV
  • [1] Chen M Y, Hu D Y, Sun J G, et al. MCrAlTaY alloy powder prepared by vacuum atomization. Therm Spray Technol, 2010, 2(1): 27

    陈美英, 胡敦元, 孙建刚, 等. 真空雾化法制备MCrAlTaY合金粉末. 热喷涂技术, 2010, 2(1): 27
    [2] Zhou S F, Liu J, Xiong Z, et al. Research progress on improving the high-temperature oxidation resistance of MCrAlY coatings. Laser Optoelectron Prog, 2015, 52(12): 120004 doi: 10.3788/LOP52.120004

    周圣丰, 刘佳, 熊征, 等. 提高MCrAlY涂层抗高温氧化性能方法的研究进展. 激光与光电子学进展, 2015, 52(12): 120004 doi: 10.3788/LOP52.120004
    [3] Yang H Z, Zou J P, Shi Q, et al. Recent advances for interface diffusion behavior in MCrAlY coatings at elevated temperature oxidation. Rare Met Mater Eng, 2020, 49(7): 2240
    [4] Xu H B, Gong S K, Liu F S, et al. Recent development in materials design of thermal barrier coatings for gas turbine. Acta Aeronaut Astronaut Sin, 2000, 21(1): 7

    徐惠彬, 宫声凯, 刘福顺, 等. 航空发动机热障涂层材料体系的研究. 航空学报, 2000, 21(1): 7
    [5] Chang X C, Wang J Q, Hou W L, et al. Microstructure of supersonic gas atomized NiCoCrAlTaY alloy powder and high temperature oxidation resistance of coating. Surf Technol. 2000, 29(5): 9

    常新春, 王建强, 侯万良, 等. 超声雾化NiCoCrAlTaY合金粉末微观结构及涂层高温抗氧化性能. 表面技术, 2000, 29(5): 9
    [6] Zhao X M, Xu J, Zhu X X, et al. Characterization of 316L stainless steel powders produced by supersonic gas atomization. Chin J Eng, 2009, 31(10): 1270

    赵新明, 徐骏, 朱学新, 等. 超音速气雾化制备316L不锈钢粉末的表征. 工程科学学报, 2009, 31(10): 1270
    [7] Ouyang H W, Chen X, Yu W T, et al. Preparation of amorphous powders of Al-based alloy by close-coupled gas atomization. Rare Met Mater Eng, 2006, 35(6): 866

    欧阳鸿武, 陈欣, 余文焘, 等. 紧耦合气雾化制备Al基合金非晶粉末的研究. 稀有金属材料与工程, 2006, 35(6): 866
    [8] Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387

    张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387
    [9] Hu B F. The adhering formation of argon-atomized FGH95 and imported René95 superalloy powders. J Univ Sci Technol Beijing, 1987, 9(Suppl 1): 19

    胡本芙. 氩气雾化的FGH95和René95合金粉末的粘结形式. 北京科技大学学报, 1987, 9(增刊 1): 19
    [10] Hu W B, Jia C C, Hu B F, et al. Solidification microstructure of FGH96 superalloy powder prepared by argon gas atomization. Mater Sci Eng Powder Metall, 2011, 16(5): 671

    胡文波, 贾成厂, 胡本芙, 等. 氩气雾化法制备FGH96高温合金粉末颗粒的凝固组织. 粉末冶金材料科学与工程, 2011, 16(5): 671
    [11] Pan J H, Zou Y Z, Zeng J M. The influences of SDAS on the aging kinetics of A357 alloy. Automot Eng, 2009, 31(5): 435

    潘杰花, 邹勇志, 曾建民. 二次枝晶臂间距对A357合金时效动力学的影响. 汽车工程, 2009, 31(5): 435
    [12] Cao B, Liu Z M, Wang J C, et al. Microstructure and properties of Sc, Y microalloyed René104 nickel-based superalloy powders prepared by argon atomization. Mater Sci Eng Powder Metall, 2023, 28(2): 192

    曹镔, 刘祖铭, 王建川, 等. 氩气雾化Sc、Y微合金化René104镍基高温合金粉末的组织与性能. 粉末冶金材料科学与工程, 2023, 28(2): 192
    [13] Nong B Z, Zhang Y Z, Liu Z M, et al. Microstrcture and properties of new nickel-based superalloy powder prepared by argon atomization. Mater Sci Eng Powder Metall, 2021, 26(6): 547

    农必重, 张亚洲, 刘祖铭, 等. 氩气雾化制备新型镍基高温合金粉末的微观结构和性能. 粉末冶金材料科学与工程, 2021, 26(6): 547
    [14] Hu J Q, Wang C J, Wei L, et al. A comparative research of porosity in stainless steel powders manufactured by vacuum induction-melting gas atomization and plasma rotating electrode process. Powder Metall Ind, 2021, 31(4): 11

    胡家齐, 王长军, 魏来, 等. VIGA法与PREP法制备不锈钢粉末的内部孔洞对比研究. 粉末冶金工业, 2021, 31(4): 11
    [15] Zhao S Y, Wang L Q, Tan P, et al. Preparation and properties of spherial Ti–35.8Al–18.4Nb alloy powders by VIGA-CC method. Powder Metall Technol, 2020, 38(6): 443

    赵少阳, 王利卿, 谈萍, 等. VIGA-CC法制备球形Ti–35.8Al–18.4Nb合金粉末及其性能研究. 粉末冶金技术, 2020, 38(6): 443
    [16] Yang L B, Ren X N, Xia M, et al. Study on powder characteristics and effect factors of droplets size during electrode induction melting gas atomization. Rare Met Mater Eng, 2020, 49(6): 2017

    杨乐彪, 任晓娜, 夏敏, 等. 电极感应熔化气雾化粉末特性及液滴尺寸影响因素的研究. 稀有金属材料与工程, 2020, 49(6): 2017
    [17] Gao Z J, Zhang G Q, Li Z, et al. Microstructure characteristics of superalloy powders during rapid solidification prepared by argon atomization. Powder Metall Technol, 2011, 29(2): 93

    高正江, 张国庆, 李周, 等. 氩气雾化高温合金粉末的凝固组织特征. 粉末冶金技术, 2011, 29(2): 93
    [18] Liu Z M, Huang B Y, Liu Y, et al. Fabrication of Al82Ni10Y8 amorphous structured powders by argon gas atomization. J Cent South Univ Sci Technol, 2004, 35(5): 707

    刘祖铭, 黄伯云, 刘咏, 等. 氩气雾化制备Al82Ni10Y8非晶态结构粉末. 中南大学学报(自然科学版), 2004, 35(5): 707
    [19] Wang X M, Zhu S, Yang B J, et al. Preparation of Al86Ni6Y4.5Co2La1.5 amorphous powder by closed-coupled gas atomization and its characterization analysis. Rare Met Mater Eng, 2017, 46(9): 2667

    王晓明, 朱胜, 杨柏俊, 等. 紧耦合雾化制备Al86Ni6Y4.5Co2La1.5非晶粉末及其表征分析. 稀有金属材料与工程, 2017, 46(9): 2667
    [20] Li Z F, Tan P, Shen L, et al. Preparation and characterization of Ti–Al–8V–5Fe alloy powders. Powder Metall Technol, 2022, 40(6): 564

    李增峰, 谈萍, 沈垒, 等. Ti–Al–8V–5Fe合金粉末的制备及性能. 粉末冶金技术, 2022, 40(6): 564
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  79
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-05
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回