Mo–Cu芯材表面状态对多层Cu/MoCu/Cu复合材料界面结合的影响

宋鹏 李达 韩蕊蕊 熊宁 张保红 姚惠龙

宋鹏, 李达, 韩蕊蕊, 熊宁, 张保红, 姚惠龙. Mo–Cu芯材表面状态对多层Cu/MoCu/Cu复合材料界面结合的影响[J]. 粉末冶金技术, 2023, 41(3): 249-254, 262. doi: 10.19591/j.cnki.cn11-1974/tf.2023040007
引用本文: 宋鹏, 李达, 韩蕊蕊, 熊宁, 张保红, 姚惠龙. Mo–Cu芯材表面状态对多层Cu/MoCu/Cu复合材料界面结合的影响[J]. 粉末冶金技术, 2023, 41(3): 249-254, 262. doi: 10.19591/j.cnki.cn11-1974/tf.2023040007
SONG Peng, LI Da, HAN Ruirui, XIONG Ning, ZHANG Baohong, YAO Huilong. Effects of surface state for Mo–Cu interlayer materials on interface bonding of multi-layer Cu/MoCu/Cu composites[J]. Powder Metallurgy Technology, 2023, 41(3): 249-254, 262. doi: 10.19591/j.cnki.cn11-1974/tf.2023040007
Citation: SONG Peng, LI Da, HAN Ruirui, XIONG Ning, ZHANG Baohong, YAO Huilong. Effects of surface state for Mo–Cu interlayer materials on interface bonding of multi-layer Cu/MoCu/Cu composites[J]. Powder Metallurgy Technology, 2023, 41(3): 249-254, 262. doi: 10.19591/j.cnki.cn11-1974/tf.2023040007

Mo–Cu芯材表面状态对多层Cu/MoCu/Cu复合材料界面结合的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2023040007
详细信息
    通讯作者:

    E-mail: songpeng@atmcn.com

  • 中图分类号: TG142.71

Effects of surface state for Mo–Cu interlayer materials on interface bonding of multi-layer Cu/MoCu/Cu composites

More Information
  • 摘要: 采用粉末冶金熔渗法制备Mo–30Cu合金板坯,Mo–30Cu板坯和无氧铜板经轧制后在30 MPa、970 ℃的条件下进行热压复合,制得5层铜/钼铜/铜(Cu/MoCu/Cu,CPC)复合材料。通过金相组织观察、超声波扫描分析、高温热考核、漏气率测试等方法,研究了不同Mo–30Cu芯材表面处理方式对多层CPC复合材料层间结合强度的影响。结果表明,采用拉丝处理的Mo–30Cu芯材制备的多层CPC复合材料经830 ℃高温烘烤10 min热考核后,材料内部无空洞缺陷,漏气率小于5×10−3 Pa·cm3·s−1。采用研磨处理的Mo–30Cu芯材所制备的多层CPC复合材料经热考核后,材料出现鼓包现象,内部存在明显空洞缺陷,漏气率大于5×10−3 Pa·cm3·s−1
  • 图  1  Mo–30Cu芯材表面和断面扫描电子显微形貌:(a)表面形貌;(b)断口形貌

    Figure  1.  SEM images of the surface and fracture for the Mo–30Cu interlayers: (a) surface; (b) fracture

    图  2  经过表面处理后的Mo–30Cu芯材表面:(a)研磨处理;(b)拉丝处理

    Figure  2.  Surface of the Mo–30Cu interlayers after surface treatment: (a) grinding processing; (b) wiredrawing processing

    图  3  5层CPC复合材料界面结合状态

    Figure  3.  Interlayer bonding state of the 5-layer CPC composites

    图  4  5层CPC复合材料830 ℃热考核后外观状态:(a)研磨处理(b)拉丝处理

    Figure  4.  Appearance of the 5-layer CPC composites after the thermal treatment at 830 ℃: (a) grinding processing; (b) wiredrawing processing

    图  5  研磨态芯材制备的5层CPC复合材料热考核后超声波扫描电子显微形貌:(a)仅台阶位置鼓包产品;(b)上下面均有鼓包产品

    Figure  5.  SAM images of the 5-layer CPC composites prepared by grind interlayer after thermal treatment: (a) products with bulge packs only at the step position; (b) products with bulge packs on both top and bottom

    图  6  研磨态钼铜芯材表面能谱分析

    Figure  6.  EDS analysis of the grinding Mo–30Cu interlayer materials

    图  7  失效的5层CPC复合材料界面超声波扫描显微形貌

    Figure  7.  SAM image of the failed 5-layer CPC composite interface

    图  8  拉丝态芯材制备的5层CPC复合材料在不同工序后的超声波扫描显微镜照片:(a)CPC复合板材;(b)CPC裸片零件;(c)电镀镍热考核CPC零件

    Figure  8.  SAM image of the 5-layer CPC composites prepared by wiredrawing: (a) CPC composite plate; (b) non-coating CPC product; (c) nickel-coating CPC product after thermal treatment

    图  9  拉丝态芯材制备的5层CPC复合材料热考核后体视显微镜照片

    Figure  9.  Stereoscopic microscope image of the 5-layer CPC composites prepared by wiredrawing after thermal treatment

    表  1  Mo–30Cu芯材化学成分(质量分数)

    Table  1.   Chemical composition of the Mo–30Cu interlayers %

    CuFeKAlSiCaMo
    29.12000.00170.00420.00150.00100.0004余量
    下载: 导出CSV

    表  2  拉丝态芯材和研磨态芯材制备的5层CPC复合材料漏气率

    Table  2.   Leakage rate of the 5-layer CPC composites prepared by wiredrawing and grinding

    芯材表面处理漏气率 / (Pa·cm3·s−1)
    热压后裸片电镀镍热考核
    拉丝态芯材0.26×10−30.38×10−30.40×10−3
    研磨态芯材6.60×10−36.80×10−39.70×10−3
    下载: 导出CSV
  • [1] Huang L M, Luo L M, Ding X Y, et al. Research progress of W–Cu composites. Mater Mech Eng, 2014, 38(4): 1

    黄丽枚, 罗来马, 丁孝禹, 等. 钨铜复合材料的研究进展. 机械工程材料, 2014, 38(4): 1
    [2] Zhang T, Zhang Z Q, Zhang J X, et al. Preparation of SiC ceramics by aqueous gelcasting and pressureless sintering. Mater Sci Eng A, 2007, 443: 257 doi: 10.1016/j.msea.2006.08.047
    [3] Long L. Current status development trend of electronic packaging technology. Electron Packag, 2012, 12(1): 39 doi: 10.3969/j.issn.1681-1070.2012.01.013

    龙乐. 电子封装技术发展现状及趋势. 电子与封装, 2012, 12(1): 39 doi: 10.3969/j.issn.1681-1070.2012.01.013
    [4] Yang C, Qi G C, Fan G N, et al. Effect of sintering temperature on microstructure and properties of molybdenum-copper alloy. China Molybd Ind, 2020, 44(2): 52 doi: 10.13384/j.cnki.cmi.1006-2602.2020.02.013

    杨晨, 齐国超, 范广宁, 等. 烧结温度对钼铜合金组织和性能的影响. 中国钼业, 2020, 44(2): 52 doi: 10.13384/j.cnki.cmi.1006-2602.2020.02.013
    [5] Wang T G, Liang Q C, Qin Q. Research on microstructure and properties of Mo–Cu alloy prepared by powder metallurgy. Mater Rev, 2015, 29(5): 97

    王天国, 梁启超, 覃群. 粉末冶金法制备Mo–Cu合金及其性能的研究. 材料导报, 2015, 29(5): 97
    [6] Wang J F, Bu C Y, He K, et al. Preparation of ultra-fine molybdenum-cooper composite powders and fine-grained molybdenum copper alloys. Powder Metall Technol, 2021, 39(1): 24 doi: 10.19591/j.cnki.cn11-1974/tf.2020040008

    王敬飞, 卜春阳, 何凯, 等. 超细钼铜复合粉体及细晶钼铜合金的制备. 粉末冶金技术, 2021, 39(1): 24 doi: 10.19591/j.cnki.cn11-1974/tf.2020040008
    [7] Hou H T, Li D X, Li K, et al. Preparation and densification of Mo-Cu alloy. Powder Metall Ind, 2009, 19(5): 12

    侯海涛, 李笃信, 李昆, 等. Mo–Cu合金制备及其致密化行为研究. 粉末冶金工业, 2009, 19(5): 12
    [8] Song P, Liu G H, Xiong N, et al. Preparation and properties of CPC electronic packaging materials. Powder Metall Technol, 2016, 34(6): 403

    宋鹏, 刘国辉, 熊宁, 等. 电子封装CPC复合材料的制备及其性能研究. 粉末冶金技术, 2016, 34(6): 403
    [9] Lei H, Cui S, Zhou Z L, et al. Research and development of Cu/Mo/Cu laminated composite material. Powder Metall Technol, 2011, 29(3): 218

    雷虎, 崔舜, 周增林, 等. Cu/Mo/Cu平面层状复合材料的研究进展. 粉末冶金技术, 2011, 29(3): 218
    [10] Li M J, Ma Y, Gao J, et al. Research progress of diamond/Cu composites for thermal management. China Surf Eng, 2022, 35(4): 140

    李明君, 马永, 高洁, 等. 高导热金刚石/铜复合材料研究进展. 中国表面工程, 2022, 35(4): 140
    [11] Zhang M, Wang C X, Niu T, et al. Application of diamond/Al in microwave power modules. Electro-Mech Eng, 2020, 36(4): 53

    张眯, 王从香, 牛通, 等. 金刚石/铝在微波功率组件中的应用研究. 电子机械工程, 2020, 36(4): 53
    [12] Zhang S Y, He P, Shao J H, et al. Research status and challenges of simulation technology in electronic packaging. Microelectron Comput, 2023, 40(1): 75 doi: 10.19304/J.ISSN1000-7180.2022.0563

    张墅野, 何鹏, 邵建航, 等. 电子封装领域的仿真研究现状及挑战. 微电子学与计算机, 2023, 40(1): 75 doi: 10.19304/J.ISSN1000-7180.2022.0563
    [13] Wei H G, Huang C H, Liang Y, et al. Reliability analysis of plastic ball grid array double-bump lead-free solder joints under thermal cycle. Trans China Weld Inst, 2013, 34(10): 91

    韦何耕, 黄春跃, 梁颖, 等. 热循环加载条件下PBGA叠层无铅焊点可靠性分析. 焊接学报, 2013, 34(10): 91
    [14] Lin J, Lei Y P, Zhao H Y, et al. Thermal fatigue crack growth of solder joint in electronic circuit. J Mech Eng, 2010, 46(6): 120 doi: 10.3901/JME.2010.06.120

    林健, 雷永平, 赵海燕, 等. 电子电路中焊点的热疲劳裂纹扩展规律. 机械工程学报, 2010, 46(6): 120 doi: 10.3901/JME.2010.06.120
    [15] Yi Z W. Life prediction of PCB under thermal cycling and random vibration loading condition. Electron Compon Mater, 2019, 38(1): 89

    宜紫薇. 热循环与随机振动加载下电路板的寿命预测. 电子元件与材料, 2019, 38(1): 89
    [16] Liu J N, Wang J Y, Wang Y B. Fatigue life prediction of electronic packaging structures under thermal cyclic loading. Electron Compon Mater, 2021, 41(9): 987

    刘江南, 王俊勇, 王玉斌. 热循环加载下电子封装结构的疲劳寿命预测. 电子元件与材料, 2021, 41(9): 987
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  91
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回