退火温度对钨铼合金组织和性能的影响

王承阳 刘洁 孙艳艳 常洋 董帝 张海鹏 刘城凯

王承阳, 刘洁, 孙艳艳, 常洋, 董帝, 张海鹏, 刘城凯. 退火温度对钨铼合金组织和性能的影响[J]. 粉末冶金技术, 2023, 41(6): 523-527. doi: 10.19591/j.cnki.cn11-1974/tf.2023040008
引用本文: 王承阳, 刘洁, 孙艳艳, 常洋, 董帝, 张海鹏, 刘城凯. 退火温度对钨铼合金组织和性能的影响[J]. 粉末冶金技术, 2023, 41(6): 523-527. doi: 10.19591/j.cnki.cn11-1974/tf.2023040008
WANG Chengyang, LIU Jie, SUN Yanyan, CHANG Yang, DONG Di, ZHANG Haipeng, LIU Chengkai. Effect of annealing temperature on microstructure and properties of tungsten-rhenium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 523-527. doi: 10.19591/j.cnki.cn11-1974/tf.2023040008
Citation: WANG Chengyang, LIU Jie, SUN Yanyan, CHANG Yang, DONG Di, ZHANG Haipeng, LIU Chengkai. Effect of annealing temperature on microstructure and properties of tungsten-rhenium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 523-527. doi: 10.19591/j.cnki.cn11-1974/tf.2023040008

退火温度对钨铼合金组织和性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2023040008
详细信息
    通讯作者:

    E-mail: wangchengyang@atmcn.com

  • 中图分类号: TF124; TG142.71

Effect of annealing temperature on microstructure and properties of tungsten-rhenium alloys

More Information
  • 摘要: 采用粉末冶金工艺制备了钨铼合金,通过拉伸性能测试、硬度测试、光学显微观察等手段,研究了退火温度对钨铼合金组织和性能的影响。研究表明:锻造后的钨铼合金室温抗拉强度为1620 MPa,断后伸长率为20%,维氏硬度为HV30 540。钨铼合金在1500 ℃时开始发生局部再结晶,1700 ℃时发生晶粒长大。钨铼合金的室温抗拉强度、维氏硬度随着退火温度的提高而降低,断后伸长率随着退火温度的升高先增大后减小。
  • 图  1  W−25Re合金金相组织:(a)烧结态;(b)锻造态

    Figure  1.  Metallographic structure of the W−25Re alloys: (a) as-sintered; (b) as-forged

    图  2  退火温度对W−25Re合金显微组织的影响:(a)室温;(b)1300 ℃;(c)1400 ℃;(d)1500 ℃;(e)1600 ℃;(f)1700 ℃

    Figure  2.  Effect of annealing temperature on the microstructure of the W−25Re alloys: (a) room temperature; (b) 1300 ℃; (c) 1400 ℃; (d) 1500 ℃; (e) 1600 ℃; (f) 1700 ℃

    图  3  退火温度对W−25Re合金室温硬度的影响

    Figure  3.  Effect of annealing temperature on the hardness of the W−25Re alloys

    图  4  W−25Re合金室温抗拉强度、断后伸长率与退火温度的关系

    Figure  4.  Relationship between the tensile strength at room temperature, elongation after fracture, and annealing temperature of the W−25Re alloys

    图  5  W−25Re合金不同退火温度室温拉伸断口形貌:(a)1400 ℃;(b)1700 ℃

    Figure  5.  Tensile fracture morphology at room temperature of the W−25Re alloys at the different annealing temperatures: (a) 1400 ℃; (b) 1700 ℃

  • [1] Yin X S. Tungsten Rhenium Alloy and Tungsten Rhenium Thermocouple. Beijing: Metallurgical Tndustry Press, 1992

    印协世. 钨铼合金和钨铼热电偶. 北京: 冶金工业出版社, 1992
    [2] Yao H L, Wang C Y, Liu J, et al. Research progress of high-temperature properties of tungsten−rhenium alloys. China Tungsten Ind, 2022, 37(1): 60

    姚惠龙, 王承阳, 刘洁, 等. 钨铼合金研究进展. 中国钨业, 2022, 37(1): 60
    [3] Yin W H, Tang H P. Refractory Metal Materials and Engineering Applications. Beijing: Metallurgical Industry Press, 2012

    殷为宏, 汤惠萍. 难熔金属材料与工程应用. 北京: 冶金工业出版社, 2012
    [4] Zhang C G, Fan J L, Cheng H C. Effects of W content by mass on the microstructure and mechanical properties of Mo−W alloy. Powder Metall Technol, 2020, 38(1): 18

    张成功, 范景莲, 成会朝. W质量分数对Mo−W合金组织结构与力学性能的影响. 粉末冶金技术, 2020, 38(1): 18
    [5] Zhao C H, Chen Y H, Yi Z C, et al. Effect of TiB2 on the oxidation behavior of Ta−W alloy. Powder Metall Technol, 2019, 37(2): 91

    赵成会, 陈宇红, 羿舟昌, 等. TiB2对Ta−W合金氧化行为的影响. 粉末冶金技术, 2019, 37(2): 91
    [6] Wang Z, Wu H, Zhu T, et al. Defects introduced by helium irradiation at different temperatures in W and W–5wt%Re alloy. Fusion Eng Des, 2021, 172: 112746 doi: 10.1016/j.fusengdes.2021.112746
    [7] Bonny G, Bakaev A, Terentyev D, et al. Elastic properties of the sigma W–Re phase: A first principles investigation. Scr Mater, 2017, 128: 45 doi: 10.1016/j.scriptamat.2016.09.039
    [8] Wang C Y, Teng Y K, Dong D, et al. Study on recrystallization behavior of Mo−30W molybdenum alloy. Powder Metall Technol, 2018, 36(6): 418

    王承阳, 滕宇阔, 董帝, 等. Mo−30W钼合金棒材再结晶行为研究. 粉末冶金技术, 2018, 36(6): 418
    [9] Luo L M, Yan S, Liu Z, et al. Research progress and trend of advanced tungsten composite modification used for plasma facing materials. Powder Metall Technol, 2023, 41(1): 13

    罗来马, 颜硕, 刘祯, 等. 面向等离子体材料用先进钨复合材料的改性研究进展与趋势. 粉末冶金技术, 2023, 41(1): 13
    [10] Liu Z K, Chang Y A. Evaluation of the thermodynamic properties of the Re−Ta and Re−W systems. J Alloys Compd, 2000, 299(1-2): 153 doi: 10.1016/S0925-8388(99)00597-6
    [11] Tan X, Hao Y M, Yu X D, et al. Effect of annealing temperature on recrystallization behaviors of cold-rolled high-purity CVD tungsten. Heat Treat Met, 2021, 46(3): 34

    檀校, 郝玉明, 于晓东, 等. 退火温度对冷轧气相沉积高纯钨再结晶行为的影响. 金属热处理, 2021, 46(3): 34
    [12] Yu J X, Wang X P. Discussion on experimental method of thermal mechanical simulation for high-temperature high-strength tungsten−rhenium (W−Re) alloy with Gleeble system. Phys Exam Test, 2021, 39(5): 20

    余建新, 王晓鹏. 高温高强钨铼合金Gleeble热力模拟试验方法探讨. 物理测试, 2021, 39(5): 20
    [13] Wang Y J, Zhang T Q, Zhou Y, et al. Research progress in the preparation of tungsten rhenium alloy and the mechanical properties of high temperature. Rare Met Mater Eng, 2009, 38(Suppl 1): 65

    王玉金, 张太全, 周玉, 等. 钨合金的设计窗口的研究进展. 稀有金属材料与工程, 2009, 38(增刊1): 65
    [14] Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace. Rare Met Mater Eng, 2011, 40(10): 1871

    郑欣, 白润, 王东辉, 等. 航天航空用难熔金属材料的研究进展. 稀有金属材料与工程, 2011, 40(10): 1871
    [15] Peng Z H. Rare Metal Materials Processing Technology. Changsha: Central South University Press, 2003

    彭志辉. 稀有金属材料加工工艺学. 长沙: 中南大学出版社, 2003
    [16] Wang F, Zheng X, Li L P, et al. Research advances on the preparation technology and high temperature mechanical of tungsten rhenium alloy. China Tungsten Ind, 2014, 29(2): 37

    王峰, 郑欣, 李来平, 等. 钨铼合金制备方法和高温力学性能的研究进展. 中国钨业, 2014, 29(2): 37
    [17] Leonhardt T. Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide. JOM, 2009, 61: 68
  • 加载中
图(5)
计量
  • 文章访问数:  1576
  • HTML全文浏览量:  70
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回