新型镍基粉末高温合金的微观组织和力学性能

马向东 程俊义 龙安平 杨金龙 郭建政 冯干江

马向东, 程俊义, 龙安平, 杨金龙, 郭建政, 冯干江. 新型镍基粉末高温合金的微观组织和力学性能[J]. 粉末冶金技术, 2023, 41(5): 434-441. doi: 10.19591/j.cnki.cn11-1974/tf.2023040016
引用本文: 马向东, 程俊义, 龙安平, 杨金龙, 郭建政, 冯干江. 新型镍基粉末高温合金的微观组织和力学性能[J]. 粉末冶金技术, 2023, 41(5): 434-441. doi: 10.19591/j.cnki.cn11-1974/tf.2023040016
MA Xiangdong, CHENG Junyi, LONG Anping, YANG Jinlong, GUO Jianzheng, FENG Ganjiang. Microstructure and mechanical properties of a novel nickel-based powder superalloy[J]. Powder Metallurgy Technology, 2023, 41(5): 434-441. doi: 10.19591/j.cnki.cn11-1974/tf.2023040016
Citation: MA Xiangdong, CHENG Junyi, LONG Anping, YANG Jinlong, GUO Jianzheng, FENG Ganjiang. Microstructure and mechanical properties of a novel nickel-based powder superalloy[J]. Powder Metallurgy Technology, 2023, 41(5): 434-441. doi: 10.19591/j.cnki.cn11-1974/tf.2023040016

新型镍基粉末高温合金的微观组织和力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2023040016
详细信息
    通讯作者:

    E-mail: guo_jianzheng@qq.com

  • 中图分类号: TF123; TG146.15

Microstructure and mechanical properties of a novel nickel-based powder superalloy

More Information
  • 摘要: 以新型镍基粉末高温合金FGH4113A(WZ-A3)为研究对象,采用“真空感应熔炼+氩气雾化制粉+热等静压+热挤压+等温锻造”工艺路线制备全尺寸涡轮盘,系统研究了锻造态FGH4113A合金在不同热处理状态下的微观组织和力学性能。结果表明:FGH4113A合金全尺寸涡轮盘宏观形貌良好,微观晶粒组织细小均匀;经亚固溶热处理后,平均晶粒度ASTM 11~13级,室温和550 ℃的屈服强度分别为1249和1185 MPa,抗拉强度分别为1674和1656 MPa,断后伸长率分别为23.5%和19.5%,在温度700 ℃,应变范围0~0.8%,加载频率0.33 Hz条件下的疲劳寿命均值为35000周次;经过固溶热处理后,平均晶粒度ASTM 6~8级,700和800 ℃的屈服强度分别为1063和966 MPa,抗拉强度分别为1403和1112 MPa,断后伸长率分别为17.5%和12.0%,在温度800 ℃,应力330 MPa,蠕变伸长量0.2%条件下的蠕变寿命均值为384 h,在温度700 ℃,应力强度因子范围30 MPa·m0.5条件下的裂纹扩展速率小于5×10−4 mm·cycle−1
  • 图  1  FGH4113A合金涡轮盘锻造毛坯宏观形貌

    Figure  1.  Forging blank macro-morphology of the FGH4113A alloy turbine disks

    图  2  低周疲劳试样尺寸示意图(单位,mm)

    Figure  2.  Schematic diagram of the low cycle fatigue specimen size (unit, mm)

    图  3  CT裂纹扩展试样尺寸示意图(单位,mm)

    Figure  3.  Schematic diagram of the CT crack growth specimen size (unit, mm)

    图  4  锻造态FGH4113A合金显微组织形貌:(a)光学显微镜;(b)扫描电镜

    Figure  4.  Microstructure morphology of the forged FGH4113A superalloys: (a) OM; (b) SEM

    图  5  亚固溶态FGH4113A合金显微组织形貌:(a)光学显微镜;(b)扫描电镜

    Figure  5.  Microstructure morphology of the FGH4113A superalloys after the subsolvus heat treatment: (a) OM; (b) SEM

    图  6  过固溶态FGH4113A合金显微组织形貌:(a)光学显微镜;(b)扫描电镜

    Figure  6.  Microstructure morphology of the FGH4113A superalloys after the supersolvus heat treatment: (a) OM; (b) SEM

    图  7  FGH4113A合金与其它典型粉末高温合金拉伸性能:(a)屈服强度;(b)抗拉强度

    Figure  7.  Tensile properties of FGH4113A and the typical PM superalloys: (a) yield strength; (b) tensile strength

    图  8  FGH4113A合金与其它典型粉末高温合金蠕变性能

    Figure  8.  Creep properties of FGH4113A and the typical PM superalloys

    图  9  FGH4113A合金与LSHR合金低周疲劳性能

    Figure  9.  Low cycle fatigue properties of FGH4113A and LSHR superalloys

    图  10  FGH4113A合金低周疲劳典型裂纹源:(a)平台型;(b)氧化铝夹杂型

    Figure  10.  Typical crack sources of the low cycle fatigue in FGH4113A superalloys: (a) plane facet; (b) alumina inclusion

    图  11  FGH4113A合金与LSHR合金裂纹扩展性能

    Figure  11.  Crack growth properties of FGH4113A and LSHR superalloys

    表  1  FGH4113A及几种典型镍基粉末高温合金的名义化学成分[913](质量分数)

    Table  1.   Chemical composition of FGH4113A and the several typical Ni-based PM superalloys[913] %

    合金 Co Cr Mo W Al Ti Nb Ta Hf、Zr、B、C Ni
    FGH4113A 19.0 13.0 4.0 4.0 3.0 3.7 1.2 1.0 微量 余量
    RR1000 18.5 15.0 5.0 3.0 3.6 1.9 微量 余量
    René104 (ME3) 20.7 12.8 3.8 2.0 3.4 3.7 0.9 2.3 微量 余量
    LSHR 20.4 12.5 2.7 4.3 3.5 3.5 1.5 1.6 微量 余量
    FGH98 20.4 12.7 3.8 2.1 3.5 3.7 0.9 2.4 微量 余量
    FGH99 20.0 13.0 2.7 4.3 3.6 3.5 1.5 1.6 微量 余量
    ME501 18.0 12.0 2.9 3.0 3.0 3.0 1.5 4.8 微量 余量
    Alloy A 23.4 13.6 3.0 1.6 2.9 4.0 3.8 微量 余量
    Alloy B 23.3 13.5 3.0 1.6 2.9 4.0 1.6 3.7 微量 余量
    TSNA-1 19.0 10.9 2.6 4.5 2.9 3.0 1.4 5.0 微量 余量
    下载: 导出CSV
  • [1] Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application. Acta Metall Sinica, 2019, 55(9): 1133 doi: 10.11900/0412.1961.2019.00119

    张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展. 金属学报, 2019, 55(9): 1133 doi: 10.11900/0412.1961.2019.00119
    [2] Reed R C. The Superalloys: Fundamentals and Applications. London: Cambridge University Press, 2008
    [3] Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007

    傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.007
    [4] Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387

    张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387
    [5] Qiu C L, Wu X H, Mei J F, et al. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy. J Alloys Compd, 2013, 578: 454 doi: 10.1016/j.jallcom.2013.06.045
    [6] Huang H L. Research on Related Fundamental Issues of Preparation and Property Characterization of Advanced PM Superalloy FGH98 [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    黄海亮. 先进PM高温合金FGH98合金制备和性能表征相关基础问题的研究[学位论文]. 北京: 北京科技大学, 2020
    [7] Chen J Y, Xiong J Y, Liu C F, et al. Sub-solvus heat treatment study on the γ' distribution of novel nickel-based superalloy. Rare Met Mater Eng, 2023, 52(2): 699 doi: 10.12442/j.issn.1002-185X.20220067

    程俊义, 熊江英, 刘朝峰, 等. 一种新型第三代镍基粉末高温合金亚固溶热处理调控γ'相分布的研究. 稀有金属材料与工程, 2023, 52(2): 699 doi: 10.12442/j.issn.1002-185X.20220067
    [8] Chen J Y, Zhu L H, Ma X D, et al. Super-solvus heat treatment study of novel nickel-based superalloy. Rare Met Mater Eng, 2022, 51(10): 3722

    程俊义, 朱立华, 马向东, 等. 一种新型镍基粉末高温合金的过固溶热处理研究. 稀有金属材料与工程, 2022, 51(10): 3722
    [9] Ma X D, He Y J, Li Y, et al. Superplastic deformation behavior of nickel-based powder superalloy during isothermal hot compression. Rare Met Mater Eng, 2022, 51(9): 3307

    马向东, 何英杰, 李远, 等. 一种新型镍基粉末高温合金等温热压缩过程中的超塑性变形行为研究. 稀有金属材料与工程, 2022, 51(9): 3307
    [10] Yang J L, Ma X D, Li Y, et al. Thermal deformation behavior of novel ni-based PM superalloy under different initial conditions. Rare Met Mater Eng, 2022, 51(2): 651

    杨金龙, 马向东, 李远, 等. 一种新型镍基粉末高温合金不同状态热变形行为. 稀有金属材料与工程, 2022, 51(2): 651
    [11] Gabb T P, Telesman J, Kantzos P T, et al. Characterization of the temperature capabilities of advanced disk alloy ME3. NASA/TM, 2002: 211796
    [12] Gabb T P, Gayda J, Kantzos P T, et al. Thermal and mechanical property characterization of the advanced disk alloy LSHR. NASA/TM, 2005: 213645
    [13] Huang H L, Liu G Q, Wang H, et al. Effect of cooling rate and resulting microstructure on tensile properties and deformation mechanisms of an advanced PM nickel-based superalloy. J Alloys Compd, 2019, 805: 1254 doi: 10.1016/j.jallcom.2019.07.221
    [14] Gayda J, Furrer D. Dual-micro structure heat treatment. Adv Mater Processes, 2003, 161(7): 36
    [15] Mitchell R J, Lemsky J A, Ramanathan R, et al. Process development and microstructure and mechanical property evaluation of a dual microstructure heat treated advanced nickel disc alloy // Superalloys 2008. Champion, 2008: 347
    [16] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008

    郭建亭. 高温合金材料学. 北京: 科学出版社, 2008
    [17] Mcdowell D L. Viscoplasticity of heterogeneous metallic materials. Mater Sci Eng R, 2008, 62(3): 67 doi: 10.1016/j.mser.2008.04.003
    [18] Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review. Int J Fatigue, 2020, 141: 105887 doi: 10.1016/j.ijfatigue.2020.105887
    [19] Bache M R, O’Hanlon J, Child D J, et al. High temperature fatigue behaviour in an advanced nickel based superalloy: The effects of oxidation and stress relaxation at notches. Theor Appl Fract Mech, 2016, 84: 64 doi: 10.1016/j.tafmec.2016.03.007
    [20] Jiang R, Zhang L C, Zhang W T, et al. Low cycle fatigue and stress relaxation behaviours of powder metallurgy Ni-based superalloy FGH4098. Mater Sci Eng A, 2021, 87: 141421
    [21] Liu L Z, Gao Y F, Wu X H, et al. High-temperature fatigue crack growth behaviour of GH4169 alloys with different heat treatment methods. Int J Fatigue, 2022, 236(2): 161
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  71
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回