不同雾化压力下GH3536合金粉末制备和气雾化过程模拟

侯维强 吴佳欣 孟杰 梁静静 李金国

侯维强, 吴佳欣, 孟杰, 梁静静, 李金国. 不同雾化压力下GH3536合金粉末制备和气雾化过程模拟[J]. 粉末冶金技术, 2023, 41(5): 410-419. doi: 10.19591/j.cnki.cn11-1974/tf.2023040018
引用本文: 侯维强, 吴佳欣, 孟杰, 梁静静, 李金国. 不同雾化压力下GH3536合金粉末制备和气雾化过程模拟[J]. 粉末冶金技术, 2023, 41(5): 410-419. doi: 10.19591/j.cnki.cn11-1974/tf.2023040018
HOU Weiqiang, WU Jiaxin, MENG Jie, LIANG Jingjing, LI Jinguo. Atomization simulation and preparation of GH3536 powders at different atomization pressures[J]. Powder Metallurgy Technology, 2023, 41(5): 410-419. doi: 10.19591/j.cnki.cn11-1974/tf.2023040018
Citation: HOU Weiqiang, WU Jiaxin, MENG Jie, LIANG Jingjing, LI Jinguo. Atomization simulation and preparation of GH3536 powders at different atomization pressures[J]. Powder Metallurgy Technology, 2023, 41(5): 410-419. doi: 10.19591/j.cnki.cn11-1974/tf.2023040018

不同雾化压力下GH3536合金粉末制备和气雾化过程模拟

doi: 10.19591/j.cnki.cn11-1974/tf.2023040018
基金项目: 国防基础科研计划资助项目(JCKY2020130C024)
详细信息
    通讯作者:

    E-mail: jmeng@imr.ac.cn (孟杰)

    jjliang@imr.ac.cn (梁静静)

  • 中图分类号: TF123

Atomization simulation and preparation of GH3536 powders at different atomization pressures

More Information
  • 摘要: 使用真空感应熔炼气体雾化方法,在不同雾化压力(7、8、9 MPa)下制备了球形GH3536合金粉末。通过使用多相流模型和离散相模型对喷嘴下方区域进行了数值模拟,再现了不同雾化气压下的一次雾化和二次雾化过程。实验和模拟的结果表明:回流区的气体速度和滞止压力随雾化气压的提高而增加,雾化气压的增加使粉末粒度不断减小,模拟结果与实验结果吻合,验证了雾化模型的可靠性。提高雾化气压可提高细粉收得率,但颗粒尺寸的减小和颗粒形貌的改变会对粉末的流动性能造成直接影响,在雾化压力8 MPa下制备的粉末具有最佳的流动性和松装密度,分别为14.34 (s·50g−1)和4.728 g·cm−3
  • 图  1  真空感应熔炼气体雾化设备

    Figure  1.  VIGA equipment

    图  2  气雾化区域二维模型

    Figure  2.  Two-dimensional model of the gas atomization region

    图  3  单相气体流场速度分布(a)和流场内速度方向(b)

    Figure  3.  Velocity distribution of the single-phase gas vector field (a) and the velocity direction in the vector field (b)

    图  4  不同雾化压力下的速度曲线

    Figure  4.  Velocity curves at the different atomization pressures

    图  5  不同雾化压力下雾化流场中心线上压力变化曲线

    Figure  5.  Static pressure curves at the different atomization pressures

    图  6  一次雾化过程的不同破碎阶段

    Figure  6.  Different stages of the primary atomization simulation

    图  7  一次雾化过程中不同雾化气压下熔滴尺寸:(a)7 MPa;(b)8 MPa;(c)9 MPa

    Figure  7.  Droplet size at the different atomization pressures during the primary atomization simulation: (a) 7 MPa; (b) 8 MPa; (c) 9 MPa

    图  8  二次雾化过程中液滴的不同破碎阶段

    Figure  8.  Different stages of the second atomization simulation

    图  9  二次雾化后的颗粒尺寸分布:(a)7 MPa;(b)8 MPa;(c)9 MPa;(d)累积分布曲线

    Figure  9.  Particle size distribution obtained by the secondary atomization simulation: (a) 7 MPa; (b) 8 MPa; (c) 9 MPa; (d) cumulative distribution curves

    图  10  不同雾化气压下真空感应熔炼气体雾化法制备GH3536颗粒扫描电子显微形貌:(a)7 MPa;(b)8 MPa;(c)9 MPa

    Figure  10.  SEM images of the GH3536 alloy powders prepared by VIGA at the different atomization pressures: (a) 7 MPa; (b) 8 MPa; (c) 9 MPa

    图  11  不同雾化气压下粉末粒径分布:(a)7 MPa;(b)8 MPa;(c)9 MPa;(d)累积分布曲线

    Figure  11.  Particle size distribution at the different atomization pressures: (a) 7 MPa; (b) 8 MPa; (c) 9 MPa; (d) cumulative distribution curves

    图  12  不同雾化气压下GH3536粉末流动性和松装密度

    Figure  12.  Flowability and apparent density of the GH3536 powders at the different atomization pressures

    表  1  真空感应熔炼气体雾化过程模拟中氩气和GH3536合金物理性质[21]

    Table  1.   Physical properties of the argon and GH3536 superalloys in VIGA process simulation[21]

    材料 密度 / (kg·m−3) 比热容 / (J·kg−1·K−1) 热导率 / (W·m−1·K−1) 黏度 / (kg·m−1·s−1) 温度 / K
    氩气 1.66 520.64 0.02 2.13×10−5 300
    GH3536 7280.00 677.00 29.00 5.50×10−3 1780
    下载: 导出CSV

    表  2  不同雾化气压下真空感应熔炼气体雾化制备粉末和数值模拟粉末中位粒径

    Table  2.   Experimental and simulation data of the median particle size for the GH3536 superalloy powders by VIGA

    雾化气压 / MPa 模拟中值粒径 / μm 实验中值粒径 / μm
    7 42.53 41.48
    8 38.36 36.88
    9 34.88 32.63
    下载: 导出CSV
  • [1] Liu L, Meng J, Liu J L, et al. Influence of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature. J Mater Sci Technol, 2019, 35(9): 1917 doi: 10.1016/j.jmst.2019.05.026
    [2] Hou G C, Xie J, Yu J J, et al. Room temperature tensile behaviour of K640S Co-based superalloy. Mater Sci Technol, 2019, 35(5): 350
    [3] Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater Sci Eng A, 2017, 701(7): 344
    [4] Mireles J, Kim H, Lee H, et al. Development of a fused deposition modeling system for low temperature metal alloys. J Electron Packag, 2013, 13(5): 18
    [5] Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing. Acta Metall Sinica, 2021, 57(11): 1471 doi: 10.11900/0412.1961.2021.00371

    孙晓峰, 宋巍, 梁静静, 等. 激光增材制造高温合金材料与工艺研究进展. 金属学报, 2021, 57(11): 1471 doi: 10.11900/0412.1961.2021.00371
    [6] Tang L, Liang J J, Cui C Y, et al. Influence of Co content on the microstructures and mechanical properties of a Ni−Co base superalloy made by specific additive manufacturing process. Mater Sci Eng A, 2020, 786(1): 139438
    [7] Zheng M Y. Gas Atomization Technology Research of Titanium Alloy Powders for Additive Manufacturing [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    郑明月. 气雾化法制备增材制造用钛合金粉末研究[学位论文]. 北京: 北京科技大学, 2019
    [8] Lei N Z. Study on Process and Properties of Spherical Metal Powder Prepared by Plasma Rotating Electrode Process [Dissertation]. Xi’an: Xi’an University of Technology, 2019

    雷囡芝. 等离子旋转电极雾化法制备球形金属粉末的工艺及性能研究[学位论文]. 西安: 西安理工大学, 2019
    [9] Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387

    张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387
    [10] Antipas. Review of gas atomisation and spray forming phenomenology. Powder Metall, 2013, 56(4): 317 doi: 10.1179/1743290113Y.0000000057
    [11] Zeoli N, Gu S. Numerical modelling of droplet break-up for gas atomisation. Comput Mater Sci, 2006, 38(2): 282 doi: 10.1016/j.commatsci.2006.02.012
    [12] Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol, 2020, 367: 724 doi: 10.1016/j.powtec.2020.04.030
    [13] Zhang J W, Yang Y F, Sun Y N, et al. Multiphase fluid flow in an atomization process by combined liquid and gas flows. Powder Metall Technol, 2012, 30(6): 403 doi: 10.19591/j.cnki.cn11-1974/tf.2012.06.001

    张建文, 杨玉芳, 孙亚楠, 等. 液气组合雾化过程的多相流动研究. 粉末冶金技术, 2012, 30(6): 403 doi: 10.19591/j.cnki.cn11-1974/tf.2012.06.001
    [14] Xia M, Wang P, Zhang X H, et al. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys Sinica, 2018, 67(17): 41

    夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 41
    [15] Guo K K, Chen J, Liu C S, et al. Numerical simulation of the intersection angle influence on atomization process of powders produced by VIGA. J Northeast Univ Nat Sci, 2020, 41(5): 729

    郭快快, 陈进, 刘常升, 等. 数值模拟喷射夹角对VIGA制粉雾化过程的影响. 东北大学学报(自然科学版), 2020, 41(5): 729
    [16] Thompson J, Hassan O, Rolland S, et al. The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser. Powder Technol, 2016, 291: 75 doi: 10.1016/j.powtec.2015.12.001
    [17] Zhao W, Cao F, Ning Z, et al. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer. Comput Chem Eng, 2012, 40(11): 58
    [18] Aydin O, Unal R. Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior. Comput Fluids, 2010, 42(1): 37
    [19] Kim D, Kim Y, Lee H, et al. Gas atomization parametric study on the VIGA-CC based synthesis of titanium powder. Arch Metall Mater, 2020, 65(3): 997
    [20] Shi Y T, Lu W Y, Sun W H, et al. Impact of gas pressure on particle feature in Fe-based amorphous alloy powders via gas atomization: Simulation and experiment. J Mater Sci Technol, 2022, 105: 203 doi: 10.1016/j.jmst.2021.06.075
    [21] Mills K. Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Cambridge: Woodhead Publishing Ltd and ASM International, 2002
    [22] Ting J, Anderson E. A computational fluid dynamics (CFD) investigation of the wake closure phenomenon. Mater Sci Eng A, 2004, 379(1): 264
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1981
  • HTML全文浏览量:  93
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回