自蔓延高温合成氢化-脱氢制备钛粉工艺优化

周可心 杨占鑫 王俊博 母敏萱 陈健 齐国超

周可心, 杨占鑫, 王俊博, 母敏萱, 陈健, 齐国超. 自蔓延高温合成氢化-脱氢制备钛粉工艺优化[J]. 粉末冶金技术.
引用本文: 周可心, 杨占鑫, 王俊博, 母敏萱, 陈健, 齐国超. 自蔓延高温合成氢化-脱氢制备钛粉工艺优化[J]. 粉末冶金技术.
ZHOU Kexin, YANG Zhanxin, WANG Junbo, MU Minxuan, CHEN Jian, QI Guochao. Optimization on hydrogenation-dehydrogenation preparation of titanium powders by SHS[J]. Powder Metallurgy Technology.
Citation: ZHOU Kexin, YANG Zhanxin, WANG Junbo, MU Minxuan, CHEN Jian, QI Guochao. Optimization on hydrogenation-dehydrogenation preparation of titanium powders by SHS[J]. Powder Metallurgy Technology.

自蔓延高温合成氢化-脱氢制备钛粉工艺优化

基金项目: 辽宁省科揭榜挂帅资助项目(2023JH1/10400055);锦州市春芽计划资助项目(JZ2023A013)
详细信息
    通讯作者:

    E-mail: 1158178966@qq.com

  • 中图分类号: TF123

Optimization on hydrogenation-dehydrogenation preparation of titanium powders by SHS

More Information
  • 摘要: 为优化自蔓延高温合成法氢化脱氢制备钛粉工艺过程,改变传统钢球球磨为闭环气流研磨,改变传统抽空脱氢工艺为减压点燃工艺,研究了优化工艺下自蔓延高温合成法氢化和脱氢前后样品微观结构、物相组成、化学成分和粒度分布。结果表明,自蔓延高温合成氢化制得的氢化钛氢含量较高(4.662%,质量分数),闭环气流研磨氢化后样品粒度均匀,粒度分布范围为40~250 μm。与传统抽空脱氢工艺相比,减压点燃脱氢工艺有助于控制钛粉样品中N、O、C含量。
  • 图  1  自蔓延高温合成技术脱氢炉示意图(a)和物相及结构变化(b)

    Figure  1.  Schematic diagram of the dehydrogenation furnace used in HDH technology (a) and the variation of phase and structure (b)

    图  2  H−Ti体系相图

    Figure  2.  Phase diagram of the H−Ti system

    图  3  氢化前原料海绵钛X射线衍射分析(a)、扫描电镜观察((b)~(c))和能谱分析((d)~(e))

    Figure  3.  XRD patterns (a), FESEM images ((b)~(c)), and EDS analysis ((d)~(e)) of the sponge titanium samples before hydrogenation

    图  4  氢化试样X射线衍射分析(a)、吸氢前后海绵钛显微形貌((b)~(c))和氢化试样元素分布能谱分析((d)~(f))

    Figure  4.  XRD patterns of the hydrogenation samples (a), FESEM images of the sponge titanium samples before and after hydrogenation ((b)~(c)), and EDS analysis ((d)~(f)) of the hydrogenation samples after

    图  5  自蔓延高温合成技术脱氢工艺

    Figure  5.  Dehydrogenation process of the TiH2 powders by HDH method;

    图  6  脱氢试样X射线衍射分析(a)、扫描电镜观察((b)~(c))和Ti元素分布能谱分析((d)~(f))

    Figure  6.  XRD patterns (a), FESEM images ((b)~(c)), and Ti element distribution in EDS analysis ((d)~(f)) of the dehydrogenation samples

    图  7  脱氢前后样品的粒度分布曲线

    Figure  7.  Particle size distribution curve of the sample before and after dehydrogenation

    表  1  试样化学成分(质量分数)

    Table  1.   Chemical composition of samples %

    样品及状态SiFeClCNOMnMgHSnNiCrAlCu
    海绵钛原料0.0050.0170.0400.0060.0030.0510.0010.0050.0010.0040.0010.0020.0030.005
    氢化后氢化钛粉末0.0040.0160.0500.0080.0040.0620.0010.0044.6620.0030.0010.0040.0020.004
    气流磨后氢化钛粉末0.0040.0180.0500.0080.0080.0710.0010.0034.6540.0030.0010.0060.0020.004
    脱氢后钛粉0.0010.0240.0300.0030.0060.0720.0010.0050.0350.0020.0020.0080.0030.004
    下载: 导出CSV
  • [1] Zhang C L, He X, Liu C, et al. Record high Tc element superconductivity achieved in titanium. Nat Commun, 2022, 13: 5411 doi: 10.1038/s41467-022-33077-3
    [2] Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature, 2019, 576: 91 doi: 10.1038/s41586-019-1783-1
    [3] Yang Y C, Pan Y, Lu X, et al. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method. Powder Metall Technol, 2020, 38(2): 150

    杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(2): 150
    [4] Fang Z Z, Froes F H, Zhang Y. Extractive Metallurgy of Titanium. Amsterdam: Elsevier, 2020
    [5] Sun P, Fang Z Z, Xia Y, et al. A novel method for production of spherical Ti−6Al−4V powder for additive manufacturing. Powder Technol, 2016, 301: 331 doi: 10.1016/j.powtec.2016.06.022
    [6] Goso X, Kale A. Production of titanium metal powder by the HDH process. J Southern Afr Inst Min Metall, 2011, 111(3): 203
    [7] Kim Y I, Kim D K, Kim I, et al. Enhancing spreadability of hydrogenation-dehydrogenation titanium powder and novel method to characterize powder spreadability for powder bed fusion additive manufacturing. Materi Des, 2022, 226: 111247
    [8] Huang G, Cao X H, Long X G. Physical and chemical properties of titanium-hydrogen system. Mater Rev, 2006, 20(10): 128 doi: 10.3321/j.issn:1005-023X.2006.10.032

    黄刚, 曹小华, 龙兴贵. 钛-氢体系的物理化学性质. 材料导报, 2006, 20(10): 128 doi: 10.3321/j.issn:1005-023X.2006.10.032
    [9] McCracken C, Barbis D. Production of fine titanium powders via the hydride-dehydride (HDH) process. Powder Inject Mould Int, 2008, 2(2): 55
    [10] Song Y L, Dou Z B, Zhang T A, et al. Research progress on the extractive metallurgy of titanium and its alloys. Miner Process Extr Metall Rev, 2022, 42: 535
    [11] Sytschev A E, Kovalev D Y, Busurin S M, et al. Influence of synthesis conditions on the structure and phase formation during the SHS hydration of titanium. Russ J Non-Ferrous Met, 2015, 56(1): 86 doi: 10.3103/S1067821215010150
    [12] Hayazi N F, Wang Y, Chan S L I. Unlocking the metastable phases and mechanisms in the dehydrogenation process of titanium hydride. Mater Charact, 2020, 161: 110128 doi: 10.1016/j.matchar.2020.110128
    [13] Ma Q, Francis H F. Titanium Powder Metallurgy. Amsterdam: Elsevier, 2015
    [14] Li X Y, Zhang L, Qin M L, et al. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders. Powder Metall Technol, 2021, 39(3): 251

    李星宇, 章林, 秦明礼, 等. 气流磨处理对烧结钨粉微观组织和力学性能的影响. 粉末冶金技术, 2021, 39(3): 251
    [15] Dai K L. Dehydrogening Character, Compactibility and Sintering Performance of TiH2 Powder [Dissertation]. Changsha: Hunan University, 2009

    戴坤良. TiH2粉体脱氢特性和压制与烧结行为研究[学位论文]. 长沙: 湖南大学, 2009
    [16] Chen C Q, Li S X, Lu K. The defor mation behavioes of gamma hydrides in titanium under cyclic straining. Acta Mater, 2003, 51(4): 931 doi: 10.1016/S1359-6454(02)00495-0
    [17] Rasooli A, Divandari M, Shahverdi H R, et al. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction. Int J Miner Metall Mater, 2012, 19(2): 165 doi: 10.1007/s12613-012-0533-2
    [18] Luo S Z, Yang B F, Long X G. Research progress on tritide target in neutron generator. At Energy Sci Technol, 2002(Z1): 290 doi: 10.7538/yzk.2002.36.z1.0290

    罗顺忠, 杨本福, 龙兴贵. 中子发生器用氚靶的研究进展. 原子能科学技术, 2002(Z1): 290 doi: 10.7538/yzk.2002.36.z1.0290
    [19] Matijasevic L B, Banhart J, Fiechter S, et al. Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater, 2006, 54(7): 1887 doi: 10.1016/j.actamat.2005.12.012
    [20] Li G M, Gan L H, Chen L W, et al. The formation and decomposition of titanium hydride. Chin J Appl Chem, 1998, 15(1): 77 doi: 10.3724/j.issn.1000-0518.1998.1.77

    李光明, 甘礼华, 陈龙武, 等. 氢化钛的制备及其分解. 应用化学, 1998, 15(1): 77 doi: 10.3724/j.issn.1000-0518.1998.1.77
    [21] Li D W, Li J R, Li Z C, et al. Effect of heating rate on thermolysis reaction kinetics of TiH2. J Mater Metall, 2009, 8(3): 175

    李大武, 李继荣, 李展超, 等. 升温速率对TiH2热分解反应动力学的影响. 材料与冶金学报, 2009, 8(3): 175
    [22] Wang H T, Lefler M, Fang Z Z, et al. Titanium and titanium alloy via sintering of TiH2. Key Eng Mater, 2010, 436: 157 doi: 10.4028/www.scientific.net/KEM.436.157
    [23] Savvakin D H, Humenyak M M, Matviichuk M V, et al. Role of hydrogen in the process of sintering of titanium powders. Mater Sci, 2012, 47: 651 doi: 10.1007/s11003-012-9440-y
    [24] Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of TiH2. Mater Sic Eng A, 2003, 365(1): 190
    [25] Hong Y, Qu T, Shen H S, et al. Titanium production through hydrogenation and dehydrogenation process. Chin J Rare Met, 2007, 31(3): 311

    洪艳, 曲涛, 沈化森, 等. 氢化脱氢法制备钛粉工艺研究. 稀有金属, 2007, 31(3): 311
    [26] Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of anocrystalline TiH2 and consequent consolidation to form dense Ti. Metall Mater Trans A, 2003, 34: 2793 doi: 10.1007/s11661-003-0180-3
    [27] Huang L J, Yu B X, Gao S J. Kinetics of hydrogen absorption and desorption by titanium. Metall Funct Mater, 1998, 5(3): 124

    黄利军, 虞炳西, 高树浚. 钛吸氢和放氢动力学. 金属功能材料, 1998, 5(3): 124
    [28] Chen T, Yang C, Liu Z, et al. Revealing dehydrogenation effect and resultant densification mechanism during pressureless sintering of TiH2 powder. J Alloys Compd, 2021, 873: 159792 doi: 10.1016/j.jallcom.2021.159792
    [29] Kennedy A R, Lopez V H. The decomposition behavior of as-received and oxidized TiH2 foaming-agent powder. Mater Sci Eng A, 2003, 357(1): 258
    [30] Stepura G, Rosenband V, Gany A. A model for the decomposition of titanium hydride and magnesium hydride. J Alloys Compd, 2012, 513: 159 doi: 10.1016/j.jallcom.2011.10.012
    [31] Hayazi N F, Wang Y, Chan S L I. Unlocking the metastable phases and mechanisms in the dehydrogenation process of titanium hydride. Mater Charact, 2020, 161: 110128 doi: 10.1016/j.matchar.2020.110128
    [32] Chen T, Yang C, Liu Z, et al. Revealing dehydrogenation effect and resultant densification mechanism during pressureless sintering of TiH2 powder. J Alloys Compd, 2021, 873: 159792 doi: 10.1016/j.jallcom.2021.159792
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  26
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15

目录

    /

    返回文章
    返回