热处理过程中FGH96合金的微观组织演变

王杰 黄海亮 张华 张尚洲 周鑫 江亮

王杰, 黄海亮, 张华, 张尚洲, 周鑫, 江亮. 热处理过程中FGH96合金的微观组织演变[J]. 粉末冶金技术, 2023, 41(5): 393-401. doi: 10.19591/j.cnki.cn11-1974/tf.2023050008
引用本文: 王杰, 黄海亮, 张华, 张尚洲, 周鑫, 江亮. 热处理过程中FGH96合金的微观组织演变[J]. 粉末冶金技术, 2023, 41(5): 393-401. doi: 10.19591/j.cnki.cn11-1974/tf.2023050008
WANG Jie, HUANG Hailiang, ZHANG Hua, ZHANG Shangzhou, ZHOU Xin, JIANG Liang. Microstructure evolution of FGH96 alloys during heat treatment[J]. Powder Metallurgy Technology, 2023, 41(5): 393-401. doi: 10.19591/j.cnki.cn11-1974/tf.2023050008
Citation: WANG Jie, HUANG Hailiang, ZHANG Hua, ZHANG Shangzhou, ZHOU Xin, JIANG Liang. Microstructure evolution of FGH96 alloys during heat treatment[J]. Powder Metallurgy Technology, 2023, 41(5): 393-401. doi: 10.19591/j.cnki.cn11-1974/tf.2023050008

热处理过程中FGH96合金的微观组织演变

doi: 10.19591/j.cnki.cn11-1974/tf.2023050008
基金项目: 国家重点研发计划资助项目(2021YFB3700401);国家自然科学基金资助项目(52201049);山东省高等学校青创引育计划创新团队资助项目(2021)
详细信息
    通讯作者:

    E-mail: huanghailiang894@163.com

  • 中图分类号: TF123; TG156.1

Microstructure evolution of FGH96 alloys during heat treatment

More Information
  • 摘要: 通过热处理实验研究了热处理过程中FGH96合金的微观组织演化,量化了固溶温度和保温时间对晶粒尺寸、γ′相尺寸、面积分数及晶粒分布的影响,分析了γ′相和应变存储能对晶粒演变的影响。结果表明:在热处理过程中,含有大量应变存储能的变形晶粒发生静态再结晶,晶粒细化,而动态再结晶晶粒发生晶粒长大,当两者平衡时可获得均匀细小的晶粒组织。合金在1060 ℃保温120 min后,γ′相尺寸和晶粒尺寸分布较为均匀,平均晶粒尺寸为7.37 μm。γ′相的面积分数随固溶温度和保温时间的增加而减小,一次γ′相在亚固溶保温过程中存在粗化和分裂现象,使得一次γ′相的面积分数和尺寸先增加后减小。γ′相的非均匀溶解会导致局部晶粒长大较快,形成混晶。
  • 图  1  FGH96合金差示扫描量热分析结果

    Figure  1.  DSC results of the FGH96 alloys

    图  2  FGH96合金初始微观组织:(a)晶粒取向扩展;(b)晶界分布;(c)γ′相形貌;(d)晶粒尺寸分布;(e)γ′相尺寸分布

    Figure  2.  Initial microstructure of the FGH96 alloys: (a) grain orientation spread; (b) grain boundary; (c) γ′ precipitates morphology; (d) grain size distribution; (e) γ′ precipitates size distribution

    图  3  热处理过程中FGH96合金金相组织:(a)~(d)1060 ℃、30~240 min;(e)~(h)1090 ℃、30~240 min;(i)~(l)1160 ℃、30~240 min

    Figure  3.  Metallographic structure of the FGH96 alloys during heat treatment: (a)~(d) 1060 ℃, 30~240 min; (e)~(h) 1090 ℃, 30~240 min; (i)~(l) 1160 ℃, 30~240 min

    图  4  热处理过程中FGH96合金的γ′相组织:(a)~(d)1060 ℃、30~240 min;(e)~(h)1090 ℃、30~240 min;(i)~(l)1160 ℃、30~240 min

    Figure  4.  γ′ precipitates microstructure of FGH96 alloy during heat treatment: (a)~(d) 1060 ℃, 30~240 min; (e)~(h) 1090 ℃, 30~240 min; (i)~(l) 1160 ℃, 30~240 min

    图  5  加热温度与保温时间对FGH96合金晶粒及γ′相的影响

    Figure  5.  Effects of heating temperature and holding time on the grain and γ′ precipitates of the FGH96 alloys

    图  6  热处理过程中FGH96合金晶粒尺寸分布:(a)~(d)1060 ℃、30~240 min;(e)~(h)1090 ℃、30~240 min;(i)~(l)1160 ℃、30~240 min

    Figure  6.  Grain size distribution of the FGH96 alloys during heat treatment: (a)~(d) 1060 ℃, 30~240 min; (e)~(h) 1090 ℃, 30~240 min; (i)~(l) 1160 ℃, 30~240 min

    图  7  加热温度与保温时间对FGH96合金不同种类γ′相的影响:(a)一次γ′相;(b)二次γ′相

    Figure  7.  Effects of heating temperature and holding time on the different γ′ precipitates of the FGH96 alloys: (a) primary γ′ precipitate; (b) secondary γ′ precipitate

    图  8  FGH96合金晶界分布:(a)1060 ℃,30 min;(b)1060 ℃,120 min;(c)1090 ℃,30 min;(d)1090 ℃,120 min;(e)1160 ℃,30 min;(f)1160 ℃,120 min

    Figure  8.  Grain boundary distribution of the FGH96 alloys: (a) 1060 ℃, 30 min; (b) 1060 ℃, 120 min; (c) 1090 ℃, 30 min; (d) 1090 ℃, 120 min; (e) 1160 ℃, 30 min; (f) 1160 ℃, 120 min

    图  9  FGH96合金晶粒取向扩展:(a)1060 ℃,30 min;(b)1060 ℃,120 min;(c)1090 ℃,120 min;(d)1160 ℃,120 min

    Figure  9.  Grain orientation spread of the FGH96 alloys: (a) 1060 ℃, 30 min; (b) 1060 ℃, 120 min; (c) 1090 ℃, 120 min; (d) 1160 ℃, 120 min

    表  1  FGH96合金主要化学成分(质量分数)

    Table  1.   Chemical composition of the FGH96 alloys %

    Co Cr Mo W Al Ti Nb Fe Ni
    13.01 15.90 4.13 4.02 2.16 3.81 0.71 0.03 余量
    下载: 导出CSV
  • [1] Osada T, Gu Y F, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure. Acta Mater, 2013, 61(5): 1820 doi: 10.1016/j.actamat.2012.12.004
    [2] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2008
    [3] Liu G X, Wang X F, Yang J, et al. Effect of local interference on the surface microstructure of FGH96 alloys in quenching process. Powder Metall Technol, 2023, 41(2): 143

    刘光旭, 王晓峰, 杨杰, 等. 淬火处理过程中的局部干涉对FGH96合金表面组织的影响. 粉末冶金技术, 2023, 41(2): 143
    [4] Liu J T, Zhang Y W, Tao Y, et al. Grain growth behavior of FGH96 alloy forging disc during heat treatment. Heat Treat Met, 2006, 31(6): 40 doi: 10.3969/j.issn.0254-6051.2006.06.011

    刘建涛, 张义文, 陶宇, 等. FGH96合金锻造盘坯热处理过程中的晶粒长大行为. 金属热处理, 2006, 31(6): 40 doi: 10.3969/j.issn.0254-6051.2006.06.011
    [5] Wan Z P, Wang T, Li Z, et al. Influence of grain boundary primary γ′ precipitates on grain growth behavior of GH4720Li superalloy. Trans Mater Heat Treat, 2020, 41(8): 173 doi: 10.13289/j.issn.1009-6264.2020-0069

    万志鹏, 王涛, 李钊, 等. 晶界一次γ′相对GH4720Li合金晶粒长大行为的影响. 材料热处理学报, 2020, 41(8): 173 doi: 10.13289/j.issn.1009-6264.2020-0069
    [6] Semiatin S L, Shank J M, Shiveley A R, et al. The effect of forging variables on the supersolvus heat-treatment response of powder-metallurgy nickel-base superalloys. Metall Mater Trans A, 2014, 45: 6231 doi: 10.1007/s11661-014-2572-y
    [7] Wang G, Xu D S, Payton E J, et al. Mean-field statistical simulation of grain coarsening in the presence of stable and unstable pinning particles. Acta Mater, 2011, 59(11): 4587 doi: 10.1016/j.actamat.2011.04.004
    [8] Charpagne M A, Franchet J M, Bozzolo N. Overgrown grains appearing during sub-solvus heat treatment in a polycrystalline γ-γ' nickel-based superalloy. Mater Des, 2018, 144: 353 doi: 10.1016/j.matdes.2018.02.048
    [9] Hou Q, Tao Y, Jia J. Grain refinement Mechanism in multi-fire isothermal Forging of novel powder superalloys. Chin J Eng, 2019, 41(2): 209

    侯琼, 陶宇, 贾建. 新型粉末高温合金多火次等温锻造过程中晶粒细化机制. 工程科学学报, 2019, 41(2): 209
    [10] Huang H L, Liu G Q, Wang H, et al. Dissolution behavior and kinetics of γ′ phase during solution treatment in powder metallurgy nickel-based superalloy. Metall Mater Trans A, 2020, 51(3): 1075 doi: 10.1007/s11661-019-05581-7
    [11] Umantsev A, Olson G B. Ostwald ripening in multicomponent alloys. Scr Metall Mater, 1993, 29(8): 1135 doi: 10.1016/0956-716X(93)90191-T
    [12] Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys. Acta Mater, 2013, 61(11): 4237 doi: 10.1016/j.actamat.2013.03.049
    [13] Kim K, Voorhees P W. Ostwald ripening of spheroidal particles in multicomponent alloys. Acta Mater, 2018, 152: 327 doi: 10.1016/j.actamat.2018.04.041
    [14] Masoumi F, Jahazi M, Shahriari D, et al. Coarsening and dissolution of γʹ precipitates during solution treatment of AD730TM Ni-based superalloy: Mechanisms and kinetics model. J Alloys Compd, 2016, 658: 981 doi: 10.1016/j.jallcom.2015.11.002
    [15] Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater, 1999, 47: 4187 doi: 10.1016/S1359-6454(99)00277-3
    [16] Semiatin S L, Mcclary K E, Rollett A D, et al. Microstructure evolution during supersolvus heat treatment of a powder metallurgy nickel-base superalloy. Metall Mater Trans A, 2012, 43(5): 1649 doi: 10.1007/s11661-011-1035-y
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2116
  • HTML全文浏览量:  78
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回