旋锻变形量对钨合金组织及力学性能的影响

单东栋 王玲 秦颖楠 管科

单东栋, 王玲, 秦颖楠, 管科. 旋锻变形量对钨合金组织及力学性能的影响[J]. 粉末冶金技术.
引用本文: 单东栋, 王玲, 秦颖楠, 管科. 旋锻变形量对钨合金组织及力学性能的影响[J]. 粉末冶金技术.
SHAN Dongdong, WANG Ling, QIN Yingnan, GUAN Ke. Effect of rotary swaging deformation on microstructure and mechanical properties of tungsten alloys[J]. Powder Metallurgy Technology.
Citation: SHAN Dongdong, WANG Ling, QIN Yingnan, GUAN Ke. Effect of rotary swaging deformation on microstructure and mechanical properties of tungsten alloys[J]. Powder Metallurgy Technology.

旋锻变形量对钨合金组织及力学性能的影响

详细信息
    通讯作者:

    E-mail: shandongdong@attl.cn

  • 中图分类号: TF123; TG146.4

Effect of rotary swaging deformation on microstructure and mechanical properties of tungsten alloys

More Information
  • 摘要: 为了获得高性能钨合金,对93WNiFe钨合金进行旋锻变形加工,研究旋锻变形量对93WNiFe钨合金力学性能及组织的影响。结果表明,随着变形量的增加,93WNiFe钨合金组织中W晶粒由圆球状逐渐被拉长成长条状,室温抗拉强度随变形量的增加而增加,由982 MPa增加到1622 MPa,断后延伸率随变形量的增加快速降低,由35.5%下降到5.5%。当旋锻变形量小于15%时,随着变形量的增加,93WNiFe合金洛氏硬度快速增加,室温冲击韧性快速降低;当变形量大于15%后,合金洛氏硬度增加变缓,室温冲击韧性值降低变缓;当变形量为30%时,洛氏硬度最大为HRC 47.2,室温冲击韧性值最小为30.80 J·cm−2。未变形的烧结态93WNiFe合金断口形貌中存在少量W晶粒解理断裂、大量W–粘结相界面断裂、W–W界面断裂和粘结相韧窝断裂;随着锻造变形量的增加,断口形貌中W晶粒解理断裂数量逐渐增加,W–粘结相界面断裂、W–W界面断裂和粘结相韧窝断裂数量逐渐减少。
  • 图  1  不同变形量下93WNiFe合金微观组织:(a)烧结态;(b)10%;(c)15%;(d)20%;(e)25%;(f)30%;(g)烧结态放大图;(h)30%放大图

    Figure  1.  Microstructures of the 93WNiFe alloys under the different deformations: (a) sintering state; (b) 10%; (c) 15%; (d) 20%; (e) 25%; (f) 30%; (g) amplification diagram of the sintering state; (h) amplification diagram of 30%

    图  2  不同变形量93WNiFe合金室温拉伸力学性能:(a)应力应变曲线;(b)抗拉强度和延伸率

    Figure  2.  Tensile mechanical properties of the 93WNiFe alloys with the different deformations at room temperature: (a) stress strain curves; (b) tensile strength and elongation

    图  3  不同变形量下93WNiFe合金断口形貌:(a)烧结态;(b)烧结态放大图;(c)10%;(d)15%;(e)20%;(f)25%;(g)30%

    Figure  3.  Fracture morphology of the 93WNiFe alloys under the different deformations: (a) sintering state; (b) amplification diagram of sintering state; (c) 10%; (d) 15%; (e) 20%; (f) 25%; (g) 30%

    表  1  93WNiFe合金旋锻工艺参数

    Table  1.   Rotary swaging process parameters of the 93WNiFe alloys

    锻造火次加热制度锻后直径 / mm总变形量 / %
    1800 ℃×1 h19.010
    218.415
    317.920
    417.325
    516.730
    下载: 导出CSV

    表  2  不同变形量下93WNiFe合金硬度及冲击韧性

    Table  2.   Hardness and impact toughness of the 93WNiFe alloys under the different deformations

    变形量 / %硬度,HRC冲击韧性 / (J·cm−2)
    027.6157.60
    1041.561.80
    1543.448.60
    2044.339.50
    2546.632.10
    3047.230.80
    下载: 导出CSV
  • [1] Wang L, Qin Y N, Shan D D, et al. Effect of Ni/Cu ratio on property and microstructure of WNiCu alloy. Powder Metall Ind, 2022, 32(4): 106

    王玲, 秦颖楠, 单东栋, 等. Ni、Cu比对钨镍铜合金性能及金相组织的影响规律研究. 粉末冶金工业, 2022, 32(4): 106
    [2] Zhou G A, Zhang S Q, Huang J H, et al. Effect of swaging on performance and microstructure of 93W alloy micro-alloyed by Co, Mn. Powder Metall Technol, 1997, 15(3): 178

    周国安, 张守全, 黄继华, 等. 旋锻对钴、锰微合金化93W合金性能和组织的影响. 粉末冶金技术, 1997, 15(3): 178
    [3] Peng Y D, Yi J H, Wu B, et al. Microwave sintering on W–Ni–Fe heavy-density alloy and its analysis on mechanism. Rare Met Mater Eng, 2008, 37(1): 125 doi: 10.3321/j.issn:1002-185X.2008.01.030

    彭元东, 易健宏, 吴彬, 等. 微波烧结W–Ni–Fe高比重合金及其机理研究. 稀有金属材料与工程, 2008, 37(1): 125 doi: 10.3321/j.issn:1002-185X.2008.01.030
    [4] Yao H L, Xiong N, Wang L, et al. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy. Powder Metall Technol, 2021, 39(3): 269

    姚惠龙, 熊宁, 王玲, 等. 循环热处理对93W–5Ni–2Fe高比重钨合金冲击韧性的影响. 粉末冶金技术, 2021, 39(3): 269
    [5] Kumar M, Gurao N P, Upadhyaya A. Evolution of microstructure and crystallographic texture during cold rolling of liquid phase sintered tungsten heavy alloy. Int J Refract Met Hard Mater, 2022, 105: 105849 doi: 10.1016/j.ijrmhm.2022.105849
    [6] Liu Y. Technology and Mechanism of Large Deformation Strengthening for Tungsten Heavy Alloy [Dissertation]. Nanjing: Nanjing University of Science & Technology, 2016

    刘勇. 钨重合金大变形强化技术及机制研究[学位论文]. 南京: 南京理工大学, 2016
    [7] Quan J L, Liang Z F, Yan F. Research progress of tungsten alloy materials for air defense and antimissile warhead. J Ordn Equip Eng, 2020, 41(2): 94 doi: 10.11809/bqzbgcxb2020.02.021

    全嘉林, 梁争峰, 闫峰. 防空反导战斗部用钨基高比重合金研究进展. 兵器装备工程学报, 2020, 41(2): 94 doi: 10.11809/bqzbgcxb2020.02.021
    [8] Li S H, Wang F C, Tan C W, et al. Effects of deformation on microstructure performance and adiabatic shearing sensitivity of tungsten heavy alloy. Spec Cast Nonferrous Alloys, 2005, 25(11): 664

    李淑华, 王富耻, 谭成文, 等. 变形对钨合金微观组织性能及绝热剪切敏感性的影响. 特种铸造及有色金属, 2005, 25(11): 664
    [9] Zhu W T, Liu W S, Ma Y Z, et al. Influence of microstructure on crack initiation and propagation behavior in swaged tungsten heavy alloy during Charpy impact process. Mater Sci Eng A, 2023, 862: 1
    [10] Zhang B S, Kang Z J. Penetration characteristics of high density tungsten alloy and its application. China Tungsten Ind, 1999, 14(5-6): 178

    张宝生, 康志君. 高密度钨合金的穿甲特性及其应用. 中国钨业, 1999, 14(5-6): 178
    [11] Luo R M. Study on Penetration Mechanism of Fine-grained Tungsten Heavy Alloy Penetrator [Dissertation]. Nanjing: Nanjing University of Science & Technology, 2016

    罗荣梅. 细晶钨合金穿甲弹靶作用机理研究[学位论文]. 南京: 南京理工大学, 2016
    [12] Yu Y, Wang E D, Hu L X, et al. Effects of microstructure and properties of 93W–4.9Ni–2.1Fe alloys by deformation strengthening. Mater Sci Technol, 2005, 13(4): 442

    于洋, 王尔德, 胡连喜, 等. 形变强化对93W–4.9Ni–2.1Fe合金组织及性能的影响. 材料科学与工艺, 2005, 13(4): 442
    [13] Zhou S H. Research on Mechanical Alloying and Strengthened Sintering Technologies of Tungsten Heavy Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2016

    周少华. 高密度钨合金机械合金化及强化烧结工艺研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2016
    [14] Chen W G, Ye H. Structure and properties of WCu alloy wire by swaging process. Powder Metall Technol, 2011, 29(1): 13

    陈文革, 叶恒. 旋锻法制备WCu25合金线材的组织与性能研究. 粉末冶金技术, 2011, 29(1): 13
    [15] Wang G D, Yang H B, Liu G R, et al. Research progress in deformation processing of tungsten heavy alloys. Powder Metall Technol, 2014, 32(3): 221

    王广达, 杨海兵, 刘桂荣, 等. 高比重合金变形加工研究进展. 粉末冶金技术, 2014, 32(3): 221
    [16] Fan J L. Tungsten Alloy and New Preparation Technology. Beijing: Metallurgical Industry Press, 2006

    范景莲. 钨合金及其制备新技术. 北京: 冶金工业出版社, 2006
    [17] Alam M E, Odette G R. Improving the fracture toughness and ductility of liquid-phase sintered WNiFe tungsten heavy alloys by high-temperature annealing. Materials, 2023, 16(3): 916 doi: 10.3390/ma16030916
    [18] Yu Y, Zhang W C, Chen Y, et al. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9(Ni, Co)–2.1Fe alloy. Int J Refract Met Hard Mater, 2014, 44: 103
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22

目录

    /

    返回文章
    返回