新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响

张皓 田高峰 陈阳 王志彪 姜嘉赢

张皓, 田高峰, 陈阳, 王志彪, 姜嘉赢. 新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响[J]. 粉末冶金技术, 2023, 41(5): 385-392, 401. doi: 10.19591/j.cnki.cn11-1974/tf.2023070004
引用本文: 张皓, 田高峰, 陈阳, 王志彪, 姜嘉赢. 新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响[J]. 粉末冶金技术, 2023, 41(5): 385-392, 401. doi: 10.19591/j.cnki.cn11-1974/tf.2023070004
ZHANG Hao, TIAN Gaofeng, CHEN Yang, WANG Zhibiao, JIANG Jiaying. Effect of microstructure evolution on tensile properties of novel nickel-based powder metallurgy superalloys during long-term aging[J]. Powder Metallurgy Technology, 2023, 41(5): 385-392, 401. doi: 10.19591/j.cnki.cn11-1974/tf.2023070004
Citation: ZHANG Hao, TIAN Gaofeng, CHEN Yang, WANG Zhibiao, JIANG Jiaying. Effect of microstructure evolution on tensile properties of novel nickel-based powder metallurgy superalloys during long-term aging[J]. Powder Metallurgy Technology, 2023, 41(5): 385-392, 401. doi: 10.19591/j.cnki.cn11-1974/tf.2023070004

新型镍基粉末高温合金长期时效中组织演变对拉伸性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2023070004
详细信息
    通讯作者:

    E-mail: gftian2008@163.com

  • 中图分类号: TG113.2

Effect of microstructure evolution on tensile properties of novel nickel-based powder metallurgy superalloys during long-term aging

More Information
  • 摘要: 研究了新型镍基粉末高温合金在800 ℃时效100~5000 h后显微组织对拉伸性能的影响。结果表明:随着时效时间的增加,合金的晶粒尺寸未发生明显变化,晶界粗化并呈现为不连续“锯齿状”;二次γ′相发生合并粗化,粗化符合LSW理论;TCP相的析出量随时效时间的增加而增大,1000 h后在晶界处呈现细小白条状析出,2000 h后在晶内呈现大量长条形针状析出,5000 h时TCP相含量达到最大;受二次γ′相粗化的影响,合金的700 ℃拉伸强度和塑性随时效时间的增加而逐渐降低;拉伸断口具有颈缩和韧窝特征,断裂均为韧窝断裂。
  • 图  1  标准热处理后合金显微组织:(a)、(b)金相显微镜;(c)、(d)扫描电镜

    Figure  1.  Microstructure of the alloys after the standard heat treatment: (a), (b) OM; (c), (d) SEM

    图  2  800 ℃长期时效合金晶粒显微组织:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)、(f)5000 h

    Figure  2.  Grain structure of the alloys aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e), (f) 5000 h

    图  3  800 ℃长期时效合金γ′相显微形貌:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)5000 h

    Figure  3.  SEM images of the γ′ phases aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e) 5000 h

    图  4  800 ℃长期时效合金的二次γ′相平均半径与失效时间关系曲线

    Figure  4.  Relationship between the secondary γ′ phase size of the alloys and aging time at 800 ℃

    图  5  800 ℃长期时效合金TCP相形貌:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)5000 h

    Figure  5.  BSE images of the TCP phases aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e) 5000 h

    图  6  800 ℃长期时效合金拉伸性能

    Figure  6.  Tensile properties of the alloys aged at 800 ℃ for different times

    图  7  800 ℃长期时效合金拉伸断口整体形貌:(a)100 h;(b)500 h;(c)1000 h;(d)2000 h;(e)5000 h

    Figure  7.  Tensile fractures SEM images of the alloys aged at 800 ℃ for different times: (a) 100 h; (b) 500 h; (c) 1000 h; (d) 2000 h; (e) 5000 h

    图  8  800 ℃长期时效5000 h下合金拉伸断口形貌:(a)断口局部;(b)裂纹萌生;(c)裂纹扩展;(d)裂纹断裂

    Figure  8.  Tensile fractures SEM images of the alloys aged at 800 ℃ for 5000 h: (a) local morphology of tensile fracture; (b) crack initiation region; (c) crack propagation region; (d) rapidly fracture region

    表  1  镍基粉末高温合金化学成分(质量分数)

    Table  1.   Chemical composition of the nickel-based powder metallurgy superalloys %

    CrCoMoTaWAlNbTiCBZrNi
    11.0~13.019.0~22.03.5~6.02.4~4.02.1~2.53.0~5.00.5~1.03.0~4.50.050.030.05余量
    下载: 导出CSV

    表  2  800 ℃长期时效合金晶粒尺寸

    Table  2.   Grain size of the alloys aged at 800 ℃ for different times

    时效时间 / h晶粒尺寸 / μm标准差
    10013.806.78
    50014.486.27
    100014.978.34
    200012.976.46
    500014.787.22
    下载: 导出CSV

    表  3  800 ℃长期时效合金二次γ′相平均尺寸

    Table  3.   Size of the secondary γ′ phases aged at 800 ℃ for different times

    时效时间 / h二次γ′相平均尺寸(半径) / nm
    10071.4
    50071.4
    100085.6
    2000110.0
    5000132.3
    下载: 导出CSV

    表  4  800 ℃长期时效合金TCP相含量

    Table  4.   Content of the TCP phases aged at 800 ℃ for different times

    时效时间 / hTCP相面积分数 / %
    100
    500
    10000.392
    20002.430
    50002.667
    下载: 导出CSV
  • [1] Gessinger G H. Powder Metallurgy of Superalloys. Zhang Y W, Transl. Beijing: Metallurgical Industry Press, 2017

    Gessinger G H. 粉末高温合金. 张义文, 译. 北京: 冶金工业出版社, 2017
    [2] Reed R C. The Superalloys Fundamentals and Applications. Cambridg: Cambridge University Press, 2006
    [3] Li J R, Xiong J C, Tang D Z. Advanced High Temperature Structural Materials and Technology. Beijing: National Defense Industry Press, 2012

    李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术. 北京: 国防工业出版社, 2012
    [4] Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engines. Acta Metall Sin, 2019, 55(9): 1133 doi: 10.11900/0412.1961.2019.00119

    张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展. 金属学报, 2019, 55(9): 1133 doi: 10.11900/0412.1961.2019.00119
    [5] Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131

    侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131
    [6] Jia J, Tao Y, Zhang Y W, et al. Recent development of third generation P/M superalloy René104. Powder Metall Ind, 2007, 17(3): 36 doi: 10.3969/j.issn.1006-6543.2007.03.008

    贾建, 陶宇, 张义文, 等. 第三代粉末冶金高温合金René104的研究进展. 粉末冶金工业, 2007, 17(3): 36 doi: 10.3969/j.issn.1006-6543.2007.03.008
    [7] Gabb T P, Telesman J, Kantzos P T, et al. Characterization of the temperature capabilities of advanced disk alloy ME3. NASA/TM-2002-211796. Washington D C, 2002
    [8] Yang L B, Ren X N, Ge C C, et al. Status and development of powder metallurgy nickel-based disk superalloys. Int J Mater Res, 2019, 110(10): 901 doi: 10.3139/146.111820
    [9] Gabb T P, Gayda J, Telesman J, et al. Realistic subscale evaluations of the mechanical properties of advanced disk superalloys. NASA/TM-2003-212086. Washington D C, 2003
    [10] Bakradze M M, Ovsepyan S V, Buiakina A A, et al. Development of Ni-base superalloy with operating temperature up to 800 ℃ for gas turbine disks. Inorg Mater Appl Res, 2019, 9(6): 1044
    [11] Cheng C, Dong J X, Zhang M C. Characteristics and development of three generations of powder metallurgy superalloys. World Iron Steel, 2011, 11(5): 43 doi: 10.3969/j.issn.1672-9587.2011.05.008

    程茜, 董建新, 张麦仓. 三代粉末高温合金的特征及发展. 世界钢铁, 2011, 11(5): 43 doi: 10.3969/j.issn.1672-9587.2011.05.008
    [12] Tian G F, Wang Y, Yang J, et al. Thermodynamic calculation of equilibrium precipitated phases in P/M nickel-base superalloy. Powder Metall Technol, 2012, 30(4): 243 doi: 10.3969/j.issn.1001-3784.2012.04.001

    田高峰, 汪煜, 杨杰, 等. Ni基粉末冶金高温合金平衡析出相的热力学研究. 粉末冶金技术, 2012, 30(4): 243 doi: 10.3969/j.issn.1001-3784.2012.04.001
    [13] Chen Y, Tian G F, Yang J, et al. Effect of deformation parameter on solution heat-treated microstructure of extruded Ni-based powder metallurgy superalloy. J Aeron Mater, 2019, 39(4): 19 doi: 10.11868/j.issn.1005-5053.2019.000049

    陈阳, 田高峰, 杨杰, 等. 变形参数对挤压成型镍基粉末高温合金固溶热处理晶粒组织的影响. 航空材料学报, 2019, 39(4): 19 doi: 10.11868/j.issn.1005-5053.2019.000049
    [14] Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387

    张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387
    [15] Yang G H, Tian G F, Zhang X L, et al. Effect of long-term aging on microstructure stability of a novel nickel base powder superalloy. J Alloys Compd, 2022, 906: 164297 doi: 10.1016/j.jallcom.2022.164297
    [16] Huang Y S, Wang X G, Cui C Y, et al. The effect of coarsening of γ′ precipitate on creep properties of Ni-based single crystal superalloys during long-term aging. Mater Sci Eng A, 2020, 773: 138886 doi: 10.1016/j.msea.2019.138886
    [17] Xiao X, Zhou L Z, Guo J T. Microstructural stability and creep behavior of nickel base superalloy U720Li. Acta Metall Sin, 2001, 37(11): 1159 doi: 10.3321/j.issn:0412-1961.2001.11.006

    肖璇, 周兰章, 郭建亭. 镍基高温合金U720Li的组织稳定性及蠕变行为. 金属学报, 2001, 37(11): 1159 doi: 10.3321/j.issn:0412-1961.2001.11.006
    [18] Picasso A, Somoza A, Tolley A. Nucleation, growth and coarsening of γ′-precipitates in a Ni–Cr–Al-based commercial superalloy during artificial aging. J Alloys Compd, 2009, 479(1-2): 129 doi: 10.1016/j.jallcom.2008.12.068
    [19] Mehdizadeh M, Hassan F. Effects of different elevated temperature and long-term exposure on microstructural evolution and mechanical characteristics of IN617 Ni-based superalloy. Mater Sci Eng A, 2022, 841: 143025 doi: 10.1016/j.msea.2022.143025
    [20] Wang M Y, Ji Z, Zhang Y F, et al. Research progress on the prior particle boundary of a powder metallurgy superalloy. Powder Metall Technol, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011

    王梦雅, 纪箴, 张一帆, 等. 粉末高温合金中原始粉末颗粒边界研究进展. 粉末冶金技术, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011
    [21] Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy DOE: chemistry, properties, phase formations and thermal stability // Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys. Hoboken, 2016: 189
    [22] Wang J, Zhou L Z, Sheng L Y, et al. The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure. Mater Des, 2012, 39: 55 doi: 10.1016/j.matdes.2012.02.020
    [23] Tan L M, Zhang Y W, Jia J, et al. Precipitation of μ phase in nickel-based powder metallurgy superalloy FGH97. J Iron Steel Res, 2016, 23(8): 851 doi: 10.1016/S1006-706X(16)30130-3
    [24] Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater, 2001, 49(19): 4113 doi: 10.1016/S1359-6454(01)00265-8
    [25] Wu K, Liu G Q, Hu B F, et al. Alloy design of a new type high-performance P/M turbine disk superalloy. Procedia Eng, 2012, 27: 939 doi: 10.1016/j.proeng.2011.12.541
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  2121
  • HTML全文浏览量:  60
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-02
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回