热处理对镍基粉末高温合金扩散连接界面组织演变及性能的影响

刘光旭 王晓峰 杨杰 邹金文

刘光旭, 王晓峰, 杨杰, 邹金文. 热处理对镍基粉末高温合金扩散连接界面组织演变及性能的影响[J]. 粉末冶金技术, 2022, 40(3): 218-225. doi: 10.19591/j.cnki.cn11–1974/tf.2021040006
引用本文: 刘光旭, 王晓峰, 杨杰, 邹金文. 热处理对镍基粉末高温合金扩散连接界面组织演变及性能的影响[J]. 粉末冶金技术, 2022, 40(3): 218-225. doi: 10.19591/j.cnki.cn11–1974/tf.2021040006
LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. doi: 10.19591/j.cnki.cn11–1974/tf.2021040006
Citation: LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. doi: 10.19591/j.cnki.cn11–1974/tf.2021040006

热处理对镍基粉末高温合金扩散连接界面组织演变及性能的影响

doi: 10.19591/j.cnki.cn11–1974/tf.2021040006
基金项目: 国家科技重大专项资助项目(2017-VI-0016-0088)
详细信息
    通讯作者:

    E-mail: wangxiaofeng_0404@163.com

  • 中图分类号: TG132.3

Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface

More Information
  • 摘要: 采用金相显微镜、扫描电子显微镜、电子显微探针及高温拉伸测试的方法,研究了热处理对一种镍基粉末高温合金扩散连接界面组织演变及性能的影响。结果表明,在镍基粉末高温合金扩散连接时,基体中的Cr、Mo、Co、W、Al和Ti元素向界面扩散,导致界面处出现明显的连接影响区。Ni元素由电镀层向基体扩散,与Al和Ti元素发生反应,生成粗大γ'相,并呈“簇状”条带分布。经亚固溶处理和过固溶处理后,Cr、Mo、Co、W、Al、Ti和Ni元素进一步扩散,改变了连接影响区和γ'相“簇状”条带的宽度。650 ℃拉伸测试结果表明,扩散连接界面断裂面同时包含界面和基体,断口中存在大量韧窝及少量解离面,表现出韧性–解理的复合断裂模式。经亚固溶+时效处理后,界面强度显著提高,但界面塑性减低;经过固溶+时效处理后,界面强度有所下降,且界面塑性进一步降低。
  • 图  1  镍基粉末高温合金电镀Ni层形貌(a)及锻态组织扫描电子显微形貌(b)

    Figure  1.  SEM images of the pure Ni coating (a) and the as-forged microstructure of PM Ni-based superalloy (b)

    图  2  拉伸试样加工图

    Figure  2.  Drawing of the tensile specimen

    图  3  经不同工艺热处理后镍基粉末高温合金扩散连接界面金相组织:(a)DB0;(b)DB1;(c)DB2;(d)DB3;(e)DB4;(f)DB5

    Figure  3.  OM images of PM Ni-based superalloys in the diffusion bonding interface after the different heat treatments: (a) DB0; (b) DB1; (c) DB2; (d) DB3; (e) DB4; (f) DB5

    图  4  DB0试样界面区域电子探针面扫描元素分布

    Figure  4.  Element distribution obtained from EPMA in the interface of DB0 specimen

    图  5  经过不同热处理工艺后镍基粉末高温合金扩散连接界面扫描电子显微形貌:(a)和(d)DB0;(b)和(e)DB3;(c)和(f)DB5;(g)图5(d)A点能谱分析

    Figure  5.  SEM images of PM Ni-based superalloys in the diffusion bonding interface treated by the different heat treatments: (a) and (d) DB0; (b) and (e) DB3; (c) and (f) DB5; (g) EDS analysis of point A in Fig. 5(d)

    图  6  界面区域电子探针线扫描元素分布:(a)DB0;(b)DB1;(c)DB2;(d)DB3;(e)DB4;(f)DB5

    Figure  6.  Element distribution obtained from EPMA line scan in the PM Ni-based superalloy interface: (a) DB0; (b) DB1; (c) DB2; (d) DB3; (e) DB4; (f) DB5

    图  7  镍基粉末高温合金连接界面650 ℃拉伸的应力–应变曲线及断口宏观形貌

    Figure  7.  Stress-strain curves of the PM Ni-based superalloy interface and the macro-morphology of fracture at 650 ℃

    图  8  镍基粉末高温合金试样拉伸断裂表面显微组织:(a)和(d)DB0;(b)和(e)DB3;(c)和(f)DB5

    Figure  8.  Microstructure on the fracture surface of the PM Ni-based superalloys: (a) and (d) DB0; (b) and (e) DB3; (c) and (f) DB5

    图  9  镍基粉末高温合金试样拉伸断口扫描电子显微形貌:(a)和(d)DB0;(b)和(e)DB3;(c)和(f)DB5

    Figure  9.  SEM morphology of the PM Ni-based superalloy fracture: (a) and (d) DB0; (b) and (e) DB3; (c) and (f) DB5

    表  1  镍基粉末高温合金的主要化学成分(质量分数)

    Table  1.   Chemical composition of the PM Ni-based superalloys %

    CrCoWMoTaNbAlTiCZrNi
    11.0~
    13.2
    19.0~
    22.0
    3.5~
    6.0
    3.5~
    6.0
    2.4~
    4.0
    0.6~
    1.1
    3.0~
    4.5
    3.0~
    4.5
    0.0540.042余量
    下载: 导出CSV

    表  2  试样编号及热处理制度

    Table  2.   Sample designation and heat treatment regime

    试样编号热处理制度
    DB0未进行热处理
    DB1时效处理:760 ℃/8 h/炉冷
    DB2亚固溶处理:1135 ℃/2 h/空冷
    DB3亚固溶+时效处理:1135 ℃/2 h/空冷+
    760 ℃/8 h/炉冷
    DB4过固溶处理:1170 ℃/2 h/空冷
    DB5过固溶+时效处理:1170 ℃/2 h/空冷+
    760 ℃/8 h/炉冷
    下载: 导出CSV
  • [1] Zou J W, Wang W X. Development and application of P/M superalloy. J Aeron Mater, 2006, 26(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051

    邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006, 26(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051
    [2] Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201

    傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201
    [3] Xu W Y, Li Z, Liu Y F, et al. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders. Powder Metall Technol, 2020, 38(3): 192

    许文勇, 李周, 刘玉峰, 等. 温度对镍基高温合金粉末氧化行为的影响. 粉末冶金技术, 2020, 38(3): 192
    [4] Zhong Z Y, Zhang Y W, Liu J T, et al. Effects of aging heat treatment on the microstructure and properties of a new type nickel-based PM superalloy. Powder Metall Ind, 2020, 30(3): 14

    钟治勇, 张义文, 刘建涛, 等. 时效处理对一种新型粉末高温合金组织和性能的影响. 粉末冶金工业, 2020, 30(3): 14
    [5] Preuss M, Pang J W L, Withers P J, et al. Inertia welding nickel-based superalloy: Part I. metallurgical characterization. Metall Mater Trans A, 2002, 33: 3215 doi: 10.1007/s11661-002-0307-y
    [6] Senkov O N, Mahaffey D W, Semiatin S L. A comparison of the inertia friction welding behavior of similar and dissimilar Ni-based superalloys. Metall Mater Trans A, 2018, 49: 5428 doi: 10.1007/s11661-018-4853-3
    [7] Li H Y, Huang Z W, Bray S, et al. High temperature fatigue of friction welded joints in dissimilar nickel based superalloys. Mater Sci Technol, 2007, 23: 1408 doi: 10.1179/174328407X243933
    [8] Gale W F, Butts D A. Transient liquid phase bonding. Sci Technol Weld Joining, 2004, 9: 283 doi: 10.1179/136217104225021724
    [9] Yuan L, Xiong J T, Peng Y, et al. Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy. Mater Sci Eng A, 2020, 772: 138670 doi: 10.1016/j.msea.2019.138670
    [10] Zhang G, Chandel R S, Seow H P. Solid state diffusion bonding of Inconel 718. Sci Technol Weld Joining, 2001, 6: 235 doi: 10.1179/136217101101538820
    [11] Xiong J T, Yuan L, Zhu Y, et al. Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer. J Mater Sci, 2019, 54: 6552 doi: 10.1007/s10853-018-03274-x
    [12] Chamanfar A, Jahazi M, Cormier J. A review on inertia and linear friction welding of Ni-based superalloys. Metall Mater Trans A, 2015, 46: 1639 doi: 10.1007/s11661-015-2752-4
    [13] Zhu F H, Chen C J, Li X F, et al. Role of thermal cycle in joining Ti–6Al–4V and Ti2AlNb-based alloys through diffusion bonding and post heat treatment. Mater Charact, 2019, 156: 109830 doi: 10.1016/j.matchar.2019.109830
    [14] Duarte L I, Ramos A S, Vieir M F, et al. Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers. Intermetallics, 2006, 14: 1151 doi: 10.1016/j.intermet.2005.12.011
    [15] Fu X S, Wang X C, Wang Q, et al. Effect of surface self-nanocrystallization on diffusion bonding between a titanium alloy and a TiAl-based alloy. J Mater Eng Perform, 2018, 27: 5551 doi: 10.1007/s11665-018-3638-6
    [16] Zhang C, Li M Q, Li H. Diffusion behavior at void tip and its contributions to void shrinkage during solid state bonding. J Mater Sci Technol, 2018, 34: 1449 doi: 10.1016/j.jmst.2017.12.001
    [17] Elrefaey A, Tillmann W. Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer. J Mater Proc Technol, 2009, 209: 2746 doi: 10.1016/j.jmatprotec.2008.06.014
    [18] Cui Z Q, Qin Y C. Metallurgy and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2011

    崔忠圻, 覃耀春. 金属学与热处理. 2版. 北京: 机械工业出版社, 2011
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  152
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回