Abstract:
Fe-based pre-alloyed powders (FeCuNiSnCo powders) were prepared by mechanical alloying and the matrix material was prepared by hot-pressing sintering. The mechanical properties and microstructures of pre-alloyed powders and the matrix were characterized to determine the optimal process. The effects of ball-to-powder mass ratio, ball-milling speed, liquid-solid ratio, and ball-milling time on the apparent density of pre-alloyed powders and the hardness and bending strength of the matrix were studied by orthogonal experiment. The results show that, the recombination, deformation, crushing, and alloying of powders occur during the milling process, changing the morphology and density of the powders. The ball-milling speed and ball-to-powder mass ratio are the main factors affecting the hardness and strength of the matrix. The optimum parameters of mechanical alloying are obtained as the ball-milling time is 6 h, the ball-milling speed is 400 r·min
-1, the ball-to-powder mass ratio is 4:1, and the liquid-solid ratio is 0.5:1.0.