基于逆向设计思想的低速重载轴承用铜基粉末合金的设计
Design of Cu-based powder alloys used for low speed and heavy bearing with inverse design methodology
-
摘要: 基于需求导向, 采用逆向设计思想设计和开发了低速重载轴承用材料。首先, 利用有限元分析方法对低速重载滑动轴承服役条件进行分析, 获得了该服役条件下对材料性能的需求; 然后, 依据性能需求指标, 通过Ashby法绘制材料性能图, 并对各种可用材料进行比较和筛选, 确定Cu12Al6Ni5Fe铜基合金作为轴承材料; 最后, 采用粉末冶金法制备Cu12Al6Ni5Fe合金, 获得的合金强度为340MPa, 硬度HB 138, 达到了预期目标, 并通过对合金显微组织的分析, 提出了进一步改进思路。Abstract: Based on the demand oriented, the inverse design methodology was used to design the material used for low speed and heavy duty bearing in this paper. Firstly, the finite element analysis was performed to confirm the service condition of the low speed heavy duty sliding bearing, getting the properties of the material requirements under the service conditions. Then, the diagram of material properties was drawn by the Ashby approach, and the Cu12Al6Ni5Fe Cu-based alloys were selected as the bearing materials after comparison and screening. Finally, the Cu12Al6Ni5Fe alloy was prepared by powder metallurgy method, the alloy strength reached 340 MPa and the hardness was HB 138, which reached the expected target. According to the analysis of the alloy microstructure, the further improvement ideas were propose.