Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders
-
摘要: 为提升FeSiAl(FSA)合金的盐雾耐腐蚀性能,将对氨基苯甲酸(para-aminobenzoic acid,PABA)和氧化石墨烯(graphene oxide,GO)依次接枝和包覆到FeSiAl合金粉末表面,制备了FSA/PABA/GO复合材料,探究了氧化石墨烯对FeSiAl合金粉末耐蚀性和电磁性能的影响。研究表明,氧化石墨烯均匀包覆于FeSiAl合金粉末表面,且与合金粉末紧密结合;氧化石墨烯使FeSiAl合金的盐雾腐蚀电位从−0.15正移至0.08 V,腐蚀速率从1.21×10−11 m·s−1降低至4.75×10−13 m·s−1,显著增强了FeSiAl合金盐雾抗腐蚀性能。由于氧化石墨烯相对于FeSiAl合金具有较高的电导率,显著增加了FeSiAl合金的介电常数。FSA/PABA/GO复合材料在0.5~10.0 GHz具有较低的磁导率,较高的电导率和较低的磁导率导致复合材料表现出较差的微波吸收性能。
-
关键词:
- 氧化石墨烯 /
- FeSiAl合金粉末 /
- 耐蚀性 /
- 电磁性能
Abstract: To improve the corrosion resistance of the FeSiAl (FSA) alloys in the salt spray environment, the para-aminobenzoic acid (PABA) and graphene oxide (GO) were sequentially grafted and coated on the surface of the FeSiAl alloy powders to form the FSA/PABA/GO composites. The influence of graphene oxide on the corrosion resistance and electromagnetic properties of the FeSiAl alloy powders was investigated by the vector network analyzer. The results show that, the graphene oxide is uniformly coated on the surface of the FeSiAl alloy powders and tightly combined with the powders. The graphene oxide makes the corrosion potential of the FeSiAl alloys move from −0.15 to 0.08 V, and the corrosion rate is reduced from 1.21×10−11 to 4.75×10−13 m·s−1, which significantly enhances the corrosion resistance of the FeSiAl alloys in the salt spray environment. Compared with the pure FeSiAl alloys, the graphene oxide with higher conductivity significantly increases the matrix permittivity. In addition, the FSA/PABA/GO composites show the lower permeability at 0.5~10.0 GHz. The higher permittivity and lower permeability make the FSA/PABA/GO composites exhibit the poor microwave absorption performance. -
FeSiAl(FSA)合金粉末因其较高的磁导率和饱和磁化强度在微波吸收领域备受关注[1‒3]。然而,在盐雾环境中,FeSiAl合金粉末腐蚀速率随时间的延长而增加的特性[4‒5]限制了其在极端环境(如海洋、湿热等)中的应用。结合当前电化学腐蚀防护现状,在基体和腐蚀性介质之间构建一层稳定的保护涂层是克服FeSiAl合金腐蚀问题的有效方法之一。保护涂层可作为隔绝水和离子的屏障,防止基体腐蚀。保护涂层包括贵金属[6]、转化膜[7]、微弧氧化复合物[8‒9]、聚合物[10]、自组装纳米相颗粒[11]、等离子体电解氧化[12]、石墨烯[13]和氧化石墨烯(graphene oxide,GO)[14]等。
碳基材料(如氧化石墨烯、石墨烯、碳胶囊、碳纳米管等)由于具有高热导率、高导电性、高透光性、对分子或离子(质子除外)具有优异的不可渗透性等特点[15],获得了研究者的广泛关注,特别是在腐蚀领域[16‒17]。Asgar等[18]采用电沉积法在Ti6Al4V表面沉积了氧化石墨烯复合涂层以增强其耐腐蚀性能。研究表明,负载有氧化石墨烯复合涂层的开路电位正向移动和极化电阻明显增加,腐蚀电流密度显著降低,电荷转移电阻相比于纯Ti6Al4V提升了一个数量级。Yadav等[19]以羰基铁粉(CI)为研究对象,采用化学法在其表面包覆氧化石墨烯获得了GO/p-CI复合结构。研究表明,包覆了氧化石墨烯的样品电荷转移电阻和腐蚀电位相比于纯羰基铁粉明显升高,腐蚀电流密度显著降低。氧化石墨烯具有良好的抗腐蚀性能,原因有二:一是氧化石墨烯对腐蚀介质,如水、空气等表现出强的隔离性或阻隔性[20];二是氧化石墨烯及其改性纳米复合材料可以用作涂层中的腐蚀抑制剂,避免金属在水或空气中长时间氧化。
已有很多研究报道氧化石墨烯改善合金的抗腐蚀性能[21‒22],但关于氧化石墨烯对FeSiAl合金粉末抗盐雾腐蚀性能的研究较少。本文以FeSiAl合金粉末为研究对象,依次将对氨基苯甲酸(para-aminobenzoic acid,PABA)和氧化石墨烯接枝和包覆到FeSiAl合金粉末表面,制备了FSA/PABA/GO复合结构,用以提升FeSiAl合金粉末的盐雾耐腐蚀性能,并明晰了氧化石墨烯对FeSiAl合金粉末电磁性能的影响。
1. 实验材料及方法
1.1 实验原料
实验用球形FeSiAl合金粉末(Fe 85.0%,Si 9.6%,Al 5.4%,质量分数)为商业化产品,购于湖南长沙天久金属材料有限公司。该粉末粒径(D50)为10.6 μm,制备工艺为气雾法。氧化石墨烯购于德阳烯碳科技有限公司。对氨基苯甲酸(AR,阿拉丁)和NaCl(AR,成都金山)均为分析纯。
1.2 FSA/PABA/GO制备
将5 g对氨基苯甲酸溶解到500 mL去离子水中,并在60 ℃下超声30 min。待超声完成后,将10 g FeSiAl合金粉末添加到对氨基苯甲酸溶液中,在连续氮气吹扫下60 ℃超声处理30 min。随后,借助磁性分离处理样品,去除样品表面未反应的对氨基苯甲酸。将得到样品在80 ℃的鼓风干燥箱中干燥12 h,以获得对氨基苯甲酸接枝的FeSiAl合金粉末,记为FSA/PABA。将0.1 g高阻隔型氧化石墨烯粉末分散于50 mL去离子水中,并向溶液中添加5 g FSA/PABA粉末。然后搅拌并超声处理,随后将样品在80 ℃干燥箱中干燥12 h,得到氧化石墨烯包覆FSA/PABA复合粉末,记为FSA/PABA/GO。
1.3 样品表征
通过JEOL 7600F型场发射扫描电子显微镜(scanning electron microscope,SEM)观察FSA,FSA/PABA和FSA/PABA/GO样品的表面显微形貌。借助配备了能量色散X射线光谱仪(energy disperse spectroscopy,EDS)的FEI Talos F200x型透射电子显微镜(transmission electron microscope,TEM)观察和分析FSA,FSA/PABA和FSA/PABA/GO样品的内部显微形貌和元素组成,工作电压为200 kV。利用XRD-7000型X射线衍射仪(X-ray diffraction,XRD)分析FSA,FSA/PABA和FSA/PABA/GO样品相组成,Cu Kα辐射(λ= 0.154056 nm),扫描速率2°·min−1。使用VG EscaLab 220i型X射线光电子能谱仪(X-ray photoelectron spectroscopy,XPS)分析FSA,FSA/PABA和FSA/PABA/GO样品元素组成和化学状态,标准Al Kα X射线源(300 W)。所有样品均使用双面胶带安装,以无定形碳污染的C 1s结合能为参考,取值为284.8 eV。采用HORIBA型拉曼光谱仪(Raman spectroscopy,RS)研究FSA,FSA/PABA和FSA/PABA/GO样品的分子结构。样品的腐蚀性能通过电化学测试表示。首先将样品、聚偏氟乙烯、炭黑按照质量比8:1:1均匀混合,加入一定量的N-甲基吡咯烷酮制备成浆料,通过刮涂的方式将浆料均匀涂覆在铜箔上,待其干燥后通过压片机裁剪成直径为1.8 cm的工作电极。电化学测试系统由浸泡在5%NaCl溶液(质量分数)的样品为工作电极,铂为对电极,甘汞为参比电极(Ag/AgCl)组成。以1 mV/s的扫描速度测试了−1.2~0 V范围内样品的动电位极化曲线。将样品与石蜡(质量分数60%)混合制成复合材料,在7 MPa下压成同心圆环(内径3 mm,外径7 mm)。借助PNA-L矢量网络分析仪(N5230A型),使用T/R同轴线方法在0.5~18.0 GHz范围内测量复合材料的电磁参数(介电常数和磁导率)。
2. 结果与讨论
2.1 FSA/PABA/GO复合材料的微观组织
图1(a)为FSA/PABA/GO复合材料合成工艺示意图,图1(b)~图1(d)为FSA、FSA/PABA和FSA/PABA/GO试样显微形貌。由图1(b)可知,FSA表面较为光滑。在连续氮气吹扫下,经60 ℃超声处理30 min接枝PABA后,FSA表面弥散分布粒径~100 nm的颗粒,如图1(c)所示。经60 ℃包覆GO后,得到表面由层片状氧化石墨烯覆盖的FSA/PABA/GO,如图1(d)所示。由图1(d)局部放大图可知,片状氧化石墨烯粒径大于1 μm,径厚比大于100。为了验证FSA/PABA/GO表面氧化石墨烯成分,对FSA/PABA/GO进行透射电镜观察和能谱分析。由于FeSiAl合金粉末颗粒较大,透射电子显微镜不能穿透微米级FSA颗粒成像,故对FSA/PABA/GO边缘层片状氧化石墨烯进行透射电镜观察,结果如图1(e)所示。由图1(e)可知,透射电子显微镜电子束可以穿透氧化石墨烯成像,说明氧化石墨烯为薄片状。图1(f)~图1(g)为图1(e)中C和O元素分布,证实了氧化石墨烯的存在,也说明了氧化石墨烯覆盖于FSA/ PABA表面。
图 1 FSA/PABA/GO制备及微观结构:(a)FSA/PABA/GO合成流程示意图;(b)FSA显微形貌;(c)FSA/PABA显微形貌;(d)FSA/PABA/GO显微形貌;(e)FSA/PABA/GO边缘氧化石墨烯透射电镜形貌;(f)图1(e)中C元素分布;(g)图1(e)中O元素分布Figure 1. Preparation and microstructure of FSA/PABA/GO: (a) synthetic schematic diagram of FSA/PABA/GO; (b) SEM image of FSA, (c) SEM image of FSA/PABA; (d) SEM image of FSA/PABA/GO; (e) TEM image of graphene oxide in the edge of FSA/PABA/GO; (f) C element distribution in Fig. 1(e); (g) O element distribution in Fig. 1(e)为了进一步查明FSA/PABA/GO复合结构的组织成分,对样品进行了X射线衍射分析,结果如图2(a)所示,图中FSA和GO的衍射峰被探测到。由图可知,位于31.39°、44.99°、65.53°和83.02°的衍射峰分别对应FSA的(200)、(220)、(400)和(422)面(JCPDS#45-1206)。氧化石墨烯的典型X射线衍射峰位于2θ≈26.55°,对应于氧化石墨烯的(002)面。图2(b)所示拉曼光谱中1354 cm−1(D峰)和1589.6 cm−1(G峰)进一步肯定了FSA表面氧化石墨烯的存在,ID/IG=0.56表示氧化石墨烯中晶格缺陷较少。从图2(c)FSA/PABA/GO的C 1s高分辨X射线光电子能谱图中可以看出,C 1s谱图中包含C‒C(284.8 eV)基团,还存在C‒OH基团(285.4 eV),并且还具有少量的C=O基团(286.2 eV)。在图2(d)FSA/PABA/GO的O 1s高分辨X射线光电子能谱图中可以看出,位于534.0 eV、532.6 eV、531.4 eV和530.5 eV可以分别对应于SiO2、Al2O3、Fe2O3和C=O[23],其中C=O来源于氧化石墨烯。
图 2 FSA、FSA/PABA和FSA/PABA/GO相组成分析:(a)FSA、FSA/PABA和FSA/PABA/GO的X射线衍射图普;(b)FSA/PABA/GO的Raman光谱图;(c)FSA/PABA/GO中C 1s高分辨X射线光电子能谱图;(d) FSA/PABA/GO中O 1s高分辨X射线光电子能谱图Figure 2. Phase composition analysis of FSA, FSA/PABA, and FSA/PABA/GO: (a) XRD patterns of FSA, FSA/PABA, and FSA/PABA/GO; (b) Raman spectrum of FSA/PABA/GO; (c) high resolution XPS spectra of C 1s in FSA/PABA/GO; (d) high resolution XPS spectra of O 1s in FSA/PABA/GO2.2 FSA/PABA/GO复合材料的电化学性能研究
利用Tafel极化曲线表征FSA、FSA/PABA和FSA/PABA/GO样品在5%NaCl水溶液(质量分数)中的腐蚀行为。由图3(a)可知,FSA、FSA/PABA和FSA/PABA/GO样品腐蚀电位分别为−0.15 V、−0.14 V和0.08 V。FSA/PABA/GO的腐蚀电位明显向正电位方向移动,这表明FSA/PABA/GO在NaCl溶液中活性较低,即包覆在FSA粉末表面的氧化石墨烯起到了较好的防腐效果。i‒V的Tafel响应可定量确定腐蚀速率。据巴特勒‒沃尔默方程,Tafel斜率取决于由多相电子转移率确定的电荷转移过电位。腐蚀参数可以从Tafel图中得到,结果如表1所示,其中Ecorr为腐蚀电位,icorr为腐蚀电流密度,CR为腐蚀速率。CR值可使用式(1)计算[24]。
表 1 FSA、FSA/PABA和FSA/PABA/GO电化学参数Table 1. Electrochemical parameters of FSA, FSA/PABA, and FSA/PABA/GO样品 Ecorr / V
(vs Ag·AgCl−1)icorr /
(A·cm−2)CR /
(m·s−1)FSA −0.15 6.70×10−5 1.21×10−11 FSA/PABA −0.14 3.45×10−5 6.25×10−12 FSA/PABA/GO 0.08 2.62×10−6 4.75×10−13 $$ CR{\text{ = }}\frac{{{i_{{\text{corr}}}} \cdot K \cdot EW}}{{1.54\rho }} $$ (1) 式中:K为腐蚀速率常数(3272 mm/年),EW为当量重量(17.0),ρ为材料密度(6.34 g·cm−3)。图3(b)为FSA、FSA/PABA和FSA/PABA/GO的腐蚀速率。由此可见,FSA/PABA/GO的腐蚀速率明显低于FSA,这也直接说明了氧化石墨烯起到了增强FeSiAl合金粉末抗腐蚀的作用。
2.3 FSA/PABA/GO复合材料的电磁性能
FSA、FSA/PABA和FSA/PABA/GO样品与60%石蜡(质量分数)的复合材料介电常数实部(ε′)、虚部(ε″)和磁导率实部(μ′)、虚部(μ″)与频率的响应关系如图4所示。根据德拜理论,ε′表示电能的存储,ε″表示电能的损失。由图4(a)可知,FSA/PABA/GO的介电常数实部明显高于FSA/PABA和FSA,这是因为氧化石墨烯比纯FSA具有更高的电导率和更快的弛豫响应时间。FSA/PABA/GO的介电常数实部在频率为6 GHz和10 GHz附近有明显的共振峰,这可能是由于偶极子极化或界面极化造成的。对图4(b)中介电常数虚部而言,FSA/PABA/GO相较于FSA明显升高。ε''是由极化和电导率共同确定的。与自由极化相比,氧化石墨烯良好的电导率对介电常数虚部的影响更大。通过对比FSA、FSA/PABA和FSA/PABA/GO复合材料的磁导率,发现各样品之间的磁导率实部在0.5~10.0 GHz呈现小幅下降的趋势,这是由吸收体中磁有效体积降低导致的。通过传输线理论可知,在磁导率较低、介电常数越高的情况下,不利于吸收体与自由空间的阻抗匹配,会降低材料的微波吸收性能。因此,FSA/PABA/GO相对于FSA和FSA/PABA具有更差的微波吸收性能。
图 4 FSA、FSA/PABA和FSA/PABA/GO电磁参数:(a)介电常数的实部(ε′);(b)介电常数虚部(ε″);(c)磁导率实部(μ′);(d)磁导率虚部(μ″)Figure 4. Frequency dependence of the electromagnetic parameters for FSA, FSA/PABA, and FSA/PABA/GO: (a) the real part of the complex permittivity (ε′); (b) the imaginary part of the complex permittivity (ε″); (g) the real part of the complex permeability (μ′); (c) the imaginary part of the complex permeability (μ″)3. 结论
为提高FeSiAl合金粉末盐雾环境中抗腐蚀性能,将对氨基苯甲酸和氧化石墨烯依次接枝和包覆到FeSiAl合金粉末表面制备了FSA/PABA/GO复合材料,并探究了氧化石墨烯对复合材料耐蚀性和电磁性的影响。
(1)以对氨基苯甲酸接枝剂,可以将氧化石墨烯均匀的包覆于FeSiAl合金粉末表面,形成FSA/PABA/GO复合结构。
(2)氧化石墨烯可使FeSiAl合金粉末的盐雾腐蚀电位从−0.15正移至0.08 V,腐蚀速率从1.21×10−11降低至4.75×10−13 m·s−1,能显著增强了FeSiAl合金粉末盐雾抗腐蚀性能,这主要归结于氧化石墨烯良好的防渗透性能。
(3)通过对比FSA和FSA/PABA/GO的电磁参数,FSA/PABA/GO具有较高的介电常数,且在0.5~10.0 GHz频段内表现出较低的磁导率,展现出较差的微波吸收性能。
-
图 1 FSA/PABA/GO制备及微观结构:(a)FSA/PABA/GO合成流程示意图;(b)FSA显微形貌;(c)FSA/PABA显微形貌;(d)FSA/PABA/GO显微形貌;(e)FSA/PABA/GO边缘氧化石墨烯透射电镜形貌;(f)图1(e)中C元素分布;(g)图1(e)中O元素分布
Figure 1. Preparation and microstructure of FSA/PABA/GO: (a) synthetic schematic diagram of FSA/PABA/GO; (b) SEM image of FSA, (c) SEM image of FSA/PABA; (d) SEM image of FSA/PABA/GO; (e) TEM image of graphene oxide in the edge of FSA/PABA/GO; (f) C element distribution in Fig. 1(e); (g) O element distribution in Fig. 1(e)
图 2 FSA、FSA/PABA和FSA/PABA/GO相组成分析:(a)FSA、FSA/PABA和FSA/PABA/GO的X射线衍射图普;(b)FSA/PABA/GO的Raman光谱图;(c)FSA/PABA/GO中C 1s高分辨X射线光电子能谱图;(d) FSA/PABA/GO中O 1s高分辨X射线光电子能谱图
Figure 2. Phase composition analysis of FSA, FSA/PABA, and FSA/PABA/GO: (a) XRD patterns of FSA, FSA/PABA, and FSA/PABA/GO; (b) Raman spectrum of FSA/PABA/GO; (c) high resolution XPS spectra of C 1s in FSA/PABA/GO; (d) high resolution XPS spectra of O 1s in FSA/PABA/GO
图 4 FSA、FSA/PABA和FSA/PABA/GO电磁参数:(a)介电常数的实部(ε′);(b)介电常数虚部(ε″);(c)磁导率实部(μ′);(d)磁导率虚部(μ″)
Figure 4. Frequency dependence of the electromagnetic parameters for FSA, FSA/PABA, and FSA/PABA/GO: (a) the real part of the complex permittivity (ε′); (b) the imaginary part of the complex permittivity (ε″); (g) the real part of the complex permeability (μ′); (c) the imaginary part of the complex permeability (μ″)
表 1 FSA、FSA/PABA和FSA/PABA/GO电化学参数
Table 1 Electrochemical parameters of FSA, FSA/PABA, and FSA/PABA/GO
样品 Ecorr / V
(vs Ag·AgCl−1)icorr /
(A·cm−2)CR /
(m·s−1)FSA −0.15 6.70×10−5 1.21×10−11 FSA/PABA −0.14 3.45×10−5 6.25×10−12 FSA/PABA/GO 0.08 2.62×10−6 4.75×10−13 -
[1] Guo Y, Jian X, Zhang L, et al. Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem Eng J, 2020, 384: 123371 DOI: 10.1016/j.cej.2019.123371
[2] Guo Y, Zhang X Z, Feng X Q, et al. Non-isothermal oxidation kinetics of FeSiAl alloy powder for microwave absorption at high temperature. Composites Part B, 2018, 155: 282 DOI: 10.1016/j.compositesb.2018.08.112
[3] 卢桃丽, 范书亭, 卢琳, 等. FeSiAl 电磁屏蔽涂层的腐蚀行为对吸波性能的影响. 工程科学学报, 2019, 41(10): 1324 Lu T L, Fan S T, Lu L, et al. Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties. Chin J Eng, 2019, 41(10): 1324
[4] Guo Y, Ali R, Zhang X, et al. Raman and XPS depth profiling technique to investigate the corrosion behavior of FeSiAl alloy in salt spray environment. J Alloys Compd, 2020, 834: 155075 DOI: 10.1016/j.jallcom.2020.155075
[5] Zhang X, Guo Y, Ali R, et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J Alloys Compd, 2020, 828: 154079 DOI: 10.1016/j.jallcom.2020.154079
[6] Sun J, Liu S, Li W, et al. Hot corrosion behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy. Corros Sci, 2019, 149: 207 DOI: 10.1016/j.corsci.2019.01.014
[7] Duan G, Yang L, Liao S, et al. Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy. Corros Sci, 2018, 135: 197 DOI: 10.1016/j.corsci.2018.02.051
[8] 贺星, 孔德军, 宋仁国. S355 海洋钢表面微弧氧化复合膜层耐蚀性能. 工程科学学报, 2019, 41(9): 1152 He X, Kong D J, Song R G. Corrosion resistance of micro-arc oxidation composite coatings on S355 offshore steel. Chin J Eng, 2019, 41(9): 1152
[9] Shang W, Wu F, Wang Y Y, et al. Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys. ACS Omega, 2020, 5(13): 7262 DOI: 10.1021/acsomega.9b04060
[10] Wang H, Di D, Zhao Y, et al. A multifunctional polymer composite coating assisted with pore-forming agent: preparation, superhydrophobicity and corrosion resistance. Prog Org Coat, 2019, 132: 370 DOI: 10.1016/j.porgcoat.2019.04.027
[11] Hikku G, Jeyasubramanian K, Venugopal A, et al. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloys Compd, 2017, 716: 259 DOI: 10.1016/j.jallcom.2017.04.324
[12] Zhao J, Xie X, Zhang C. Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corros Sci, 2017, 114: 146 DOI: 10.1016/j.corsci.2016.11.007
[13] 王鑫磊, 魏世丞, 朱晓莹, 等. 石墨烯基超疏水材料制备及其应用研究进展. 工程科学学报, 2021, 43(3): 332 Wang X L, Wei S C, Zhu X Y, et al. Research progress in the preparation and application of graphene-based superhydrophobic materials. Chin J Eng, 2021, 43(3): 332
[14] Jyotheender K S, Srivastava C. Ni-graphene oxide composite coatings: Optimum graphene oxide for enhanced corrosion resistance. Composites Part B, 2019, 175: 107145 DOI: 10.1016/j.compositesb.2019.107145
[15] Wu N, Hu Q, Wei R, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon, 2021, 176: 88 DOI: 10.1016/j.carbon.2021.01.124
[16] Chauhan D S, Quraishi M, Ansari K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Prog Org Coat, 2020, 147: 105741 DOI: 10.1016/j.porgcoat.2020.105741
[17] Ding R, Li W, Wang X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J Alloys Compd, 2018, 764: 1039 DOI: 10.1016/j.jallcom.2018.06.133
[18] Asgar H, Deen K M, Rahman Z U, et al. Functionalized graphene oxide coating on Ti6Al4V alloy for improved biocompatibility and corrosion resistance. Mater Sci Eng C, 2019, 94: 920 DOI: 10.1016/j.msec.2018.10.046
[19] Yadav A, Kumar R, Choudhary H K, et al. Graphene-oxide coating for corrosion protection of iron particles in saline water. Carbon, 2018, 140: 477 DOI: 10.1016/j.carbon.2018.08.062
[20] Berry V. Impermeability of graphene and its applications. Carbon, 2013, 62: 1 DOI: 10.1016/j.carbon.2013.05.052
[21] Yan L, Zhou M, Pang X, et al. One-step in situ synthesis of reduced graphene oxide/Zn-Al layered double hydroxide film for enhanced corrosion protection of magnesium alloys. Langmuir, 2019, 35(19): 6312 DOI: 10.1021/acs.langmuir.9b00529
[22] Yadav A, Kumar R, Sahoo B. Graphene oxide coatings on amino acid modified Fe surfaces for corrosion inhibition. ACS Appl Nano Mater, 2020, 3(4): 3540 DOI: 10.1021/acsanm.0c00243
[23] Cutroneo M, Torrisi L, Havranek V, et al. Localized modification of graphene oxide properties by laser irradiation in vacuum. Vacuum, 2019, 165: 134 DOI: 10.1016/j.vacuum.2019.04.012
[24] Prasai D, Tuberquia J C, Harl R R, et al. Graphene: corrosion-inhibiting coating. ACS Nano, 2012, 6(2): 1102 DOI: 10.1021/nn203507y
-
期刊类型引用(1)
1. 吕星,罗成,梁桂杰. 一步水热法制备MoO_3纳米带/还原氧化石墨烯及其电化学性能. 粉末冶金技术. 2024(04): 388-395+402 . 本站查看
其他类型引用(1)