高级检索

机械球磨对CoCrFeMnNi放电等离子烧结高熵合金显微组织和拉伸性能的影响

王磊, 高晋昌, 包晓刚, 林万明, 郭瑞鹏

王磊, 高晋昌, 包晓刚, 林万明, 郭瑞鹏. 机械球磨对CoCrFeMnNi放电等离子烧结高熵合金显微组织和拉伸性能的影响[J]. 粉末冶金技术, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
引用本文: 王磊, 高晋昌, 包晓刚, 林万明, 郭瑞鹏. 机械球磨对CoCrFeMnNi放电等离子烧结高熵合金显微组织和拉伸性能的影响[J]. 粉末冶金技术, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
Citation: WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001

机械球磨对CoCrFeMnNi放电等离子烧结高熵合金显微组织和拉伸性能的影响

基金项目: 山西省基础研究计划资助项目(201901D211085,202203021221072)
详细信息
    通讯作者:

    郭瑞鹏: E-mail: grp88620@163.com

  • 中图分类号: TF124;TG135.3

Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering

More Information
  • 摘要:

    采用CoCrFeMnNi预合金粉末和放电等离子烧结工艺制备了全致密的粉末高熵合金,研究了球磨预处理工艺对粉末高熵合金显微组织和拉伸性能的影响。结果表明,预合金粉末的球形度随球磨时间的延长不断降低;烧结态高熵合金的物相组成不随球磨参数改变,始终为单一面心立方结构;球磨时间的延长和球料比的增加都会降低高熵合金的晶粒尺寸。随着球磨能量的升高,合金屈服强度不断增大,球料比为7.5:1.0、球磨时长为100 h时,合金屈服强度达到最高,提升约19%,强化贡献主要源于细晶强化;合金抗拉强度先增大后减小,球料比为7.5:1.0、球磨时长为30 h时,合金抗拉强度提升最大,提升约为12%。

    Abstract:

    CoCrFeMnNi high-entropy alloys with nearly full density were fabricated by spark plasma sintering (SPS) process. The effects of mechanical milling on the microstructure and tensile properties of the CoCrFeMnNi alloys were investigated. The results show that the sphericity of the pre-alloyed powders decreases with the milling time increasing. The phase composition of as-SPSed alloys presents a single face-centered cubic structure, and the grain size decreases with the increase of ball-to-powder weight ratio and mechanical milling time. Compared with the alloys without mechanical milling, the yield strength of the as-SPSed alloys increases with the increase of mechanical milling energy, which reaches the highest value when the ball-to-powder weight ratio is 7.5:1.0 and the mechanical milling time is 100 h, increasing by about 19%, which is mainly due to the fine grain strengthening. The ultimate tensile strength tends to firstly increase and then decrease, which reaches the highest value when the ball-to-powder weight ratio is 7.5:1.0 and the mechanical milling time is 30 h, increasing by about 12%.

  • 图  1   CoCrFeMnNi高熵合金粉末原始显微形貌

    Figure  1.   Microstructure of the original CoCrFeMnNi high-entropy alloy powders

    图  2   放电等离子烧结工艺示意图

    Figure  2.   Schematic diagram of the SPS process

    图  3   球磨过程粉末形貌显微:(a)~(c)球料比5.0:1.0,球磨30、50和100 h;(d)~(f)球料比7.5:1.0,球磨30、50和100 h

    Figure  3.   SEM images of the presenting powders during mechanical milling: (a)~(c) R=5.0:1.0, milling for 30, 50, and 100 h; (d)~(f) R=7.5:1.0, milling for 30, 50, and 100 h

    图  4   不同球磨参数烧结样品X射线衍射图谱

    Figure  4.   XRD patterns of the as-SPSed CoCrFeMnNi alloys with different mechanical milling parameters

    图  5   不同球磨参数对应烧结态合金显微组织及晶粒尺寸:(a)未球磨;(b)30 h,球料比5.0:1.0;(c)30 h,球料比7.5:1.0;(d)100 h,球料比5.0:1.0;(e)100 h,球料比7.5:1.0;(f)晶粒尺寸分布

    Figure  5.   Microstructures and grain size of the as-SPSed alloys in the different mechanical milling parameters: (a) without mechanical milling; (b) 30 h, R=5.0:1.0; (c) 30 h, R=7.5:1.0; (d) 100 h, R=5.0:1.0; (e) 100 h, R=7.5:1.0; (f) distribution of the average grain size

    图  6   不同球磨参数下烧结态合金拉伸性能

    Figure  6.   Tensile properties of the as-SPSed alloys corresponding to different mechanical milling parameters

    图  7   不同球磨参数下强化机制的贡献

    Figure  7.   Contribution of strengthening mechanisms under the different mechanical milling parameters

    表  1   初始CoCrFeMnNi粉末化学成分(原子分数)

    Table  1   Chemical compositions of the original CoCrFeMnNi powders %

    CoCrFeMnNi
    20.3518.4920.0420.8320.24
    下载: 导出CSV

    表  2   烧结态合金力学性能

    Table  2   Tensile properties of the as-SPSed alloys

    球磨时长 / h 球料比 屈服强度 /
    MPa
    抗拉强度 /
    MPa
    延伸率 / %
    0 280 550 51
    30 5.0:1.0 283 563 51
    30 7.5:1.0 295 615 56
    100 5.0:1.0 301 551 58
    100 7.5:1.0 342 527 54
    下载: 导出CSV
  • [1]

    Ye J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 DOI: 10.1002/adem.200300567

    [2]

    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 DOI: 10.1016/j.pmatsci.2013.10.001

    [3]

    Vaidya M, Muralikrishna G M, Murty B S, et al. High-entropy alloys by mechanical alloying: a review. J Mater Res, 2019, 34(5): 664 DOI: 10.1557/jmr.2019.37

    [4]

    Zhang M, Li R D, Yuan T C, et al. Densification and properties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering. Powder Technol, 2019, 343: 58 DOI: 10.1016/j.powtec.2018.11.005

    [5]

    He F, Wang Z J, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNb x. J Alloys Compd, 2016, 656: 284 DOI: 10.1016/j.jallcom.2015.09.153

    [6]

    Yu Y, He F, Qiao Z H, et al. Effects of temperature and microstructure on the tribological properties of CoCrFeNiNb x eutectic high entropy alloys. J Alloys Compd, 2019, 775: 1376 DOI: 10.1016/j.jallcom.2018.10.138

    [7]

    Joseph J, Haghdadi N, Shamlaye K, et al. The sliding wear behaviour of CoCrFeMnNi and Al xCoCrFeNi high entropy alloys at elevated temperatures. Wear, 2019, 428-429: 32 DOI: 10.1016/j.wear.2019.03.002

    [8]

    Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60: 1 DOI: 10.1016/j.intermet.2015.01.004

    [9]

    Park S, Nam H, Na Y, et al. Effect of initial grain size on friction stir weldability for rolled and cast CoCrFeMnNi high-entropy alloys. Met Mater Int, 2020, 26: 641 DOI: 10.1007/s12540-019-00466-1

    [10]

    Otto F, Dlouhý A, Somsen Ch, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater, 2013, 61(15): 5743 DOI: 10.1016/j.actamat.2013.06.018

    [11] 吴明明, 李来平, 高选乔, 等. 粉末冶金技术制备钼基复合材料研究进展. 粉末冶金技术, 2021, 39(5): 462

    Wu M M, Li L P, Gao X Q, et al. Research progress of molybdenum-based composites prepared by powder metallurgy technology. Powder Metall Technol, 2021, 39(5): 462

    [12] 李克峰, 施麒, 毛新华, 等. 金属粉末特性对选区激光熔化工艺及其制件性能影响. 粉末冶金技术, 2022, 40(6): 499

    Li K F, Shi Q, Mao X H, et al. Effect of metallic powder properties on selective laser melting technology and component performances. Powder Metall Technol, 2022, 40(6): 499

    [13]

    Cheng H, Xie Y C, Tang Q H, et al. Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Trans Nonferrous Met Soc China, 2018, 28(7): 1360 DOI: 10.1016/S1003-6326(18)64774-0

    [14]

    Chu C L, Chen W P, Chen Z, et al. Microstructure and mechanical behavior of FeNiCoCr and FeNiCoCrMn high-entropy alloys fabricated by powder metallurgy. Acta Metall Sin, 2021, 34: 445 DOI: 10.1007/s40195-020-01150-9

    [15]

    Xie Y H, Liang J M, Zhang D L, et al. Sustaining strength-ductility synergy of CoCrFeNiMn high entropy alloy by a multilevel heterogeneity associated with nanoparticles. Scr Mater, 2020, 187: 390 DOI: 10.1016/j.scriptamat.2020.06.054

    [16]

    Jiang F L, Zhao C C, Liang D S, et al. In-situ formed heterogeneous grain structure in spark-plasma-sintered CoCrFeMnNi high-entropy alloy overcomes the strength-ductility trade-off. Mater Sci Eng A, 2020, 771: 138625 DOI: 10.1016/j.msea.2019.138625

    [17]

    Meyers M, Chawla K. Mechanical Behavior of Materials. 2nd Ed. New York: Cambridge University Press, 2008

    [18]

    Praveen S, Basu J, Kashyap S, et al. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J Alloys Compd, 2016, 662: 361 DOI: 10.1016/j.jallcom.2015.12.020

    [19]

    Heczel A, Kawasaki M, Labar J L, et al. Defect structure and hardness in nanocrystalline CoCrFeMnNi high-entropy alloy processed by high-pressure torsion. J Alloys Compd, 2017, 711: 143 DOI: 10.1016/j.jallcom.2017.03.352

    [20]

    Stoller R E, Zinkle S J. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J Nucl Mater, 2000, 283-287(1): 349

    [21]

    Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater Des, 2017, 133: 122 DOI: 10.1016/j.matdes.2017.07.054

    [22]

    Smallman R E, Westmacott K H. Stacking faults in face-centred cubic metals and alloys. Philos Mag, 1957, 2: 669 DOI: 10.1080/14786435708242709

    [23]

    Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis. Appl Phys Lett, 1996, 69(21): 3173 DOI: 10.1063/1.117951

  • 期刊类型引用(3)

    1. 黄钰静,李举子,李浩东,张楚婷. 超声波法制备银合金粉末的研究. 宝石和宝石学杂志(中英文). 2024(02): 14-22 . 百度学术
    2. 吴龙,邓恩龙,崔永涛,李俊,叶子君. 烧结气氛对粉末冶金铁基高碳材料组织的影响. 粉末冶金技术. 2024(05): 497-502 . 本站查看
    3. 张陈增,陈存广,李杨,郭志猛,刘新华. 冷加工变形量对粉末冶金铜铁合金组织与性能的影响. 金属功能材料. 2023(06): 18-24 . 百度学术

    其他类型引用(4)

图(7)  /  表(2)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  32
  • PDF下载量:  57
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-01-05
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2024-12-27

目录

    /

    返回文章
    返回