AdvancedSearch
BAN Wei, CHEN Jiaqi, LIU Lulu, GE Tao, ZHANG Shuai. Research on flow field characteristic of close-coupled gas atomizing nozzles[J]. Powder Metallurgy Technology, 2024, 42(3): 312-319. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120015
Citation: BAN Wei, CHEN Jiaqi, LIU Lulu, GE Tao, ZHANG Shuai. Research on flow field characteristic of close-coupled gas atomizing nozzles[J]. Powder Metallurgy Technology, 2024, 42(3): 312-319. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120015

Research on flow field characteristic of close-coupled gas atomizing nozzles

More Information
  • Corresponding author:

    BAN Wei, E-mail: banwei@nxu.edu.cn

  • Received Date: March 14, 2022
  • Accepted Date: March 14, 2022
  • Available Online: March 14, 2022
  • The atomization nozzle is the core component for the metal powder preparation by close-coupled gas atomization method. The pressure at the tip of the melt delivery tube and the stagnation point is very important for the smooth outflow of the molten metal during the atomization process. When the tip of the melt delivery tube is positive pressure, the molten metal cannot flow out of the nozzle smoothly, and in severe cases, it may cause the back spray of the molten metal. The greater the pressure at the stagnation point, the greater the impact force of the atomized gas acting on the molten metal flowing out of the melt delivery tube, and the better the crushing effect. The effects of atomization pressure, protrusion length, and cone-apex angle on the pressure at the tip of the melt delivery tube and the stagnation point were studied by mathematical modeling, experimental verification, and numerical simulation in this paper. The results show that, with the increase of atomization pressure, the length of the negative pressure area remains basically unchanged, while the pressure at the stagnation point increases. With the increase of the melt delivery tube elongation, the length of the negative pressure area increases and the pressure at the stagnation point decreases. With the increase of the cone-apex angle of the melt delivery tube, the pressure at the tip of tube changes from the negative to the positive, resulting in the failure of atomization.

  • [1]
    贾成涛. 镍基耐蚀合金特性及其应用研究分析. 中国新技术新产品, 2017(1): 52 DOI: 10.3969/j.issn.1673-9957.2017.01.034

    Jia C T. Research and analysis of nickel-based corrosion resistant alloys and their applications. New Technol New Prod China, 2017(1): 52 DOI: 10.3969/j.issn.1673-9957.2017.01.034
    [2]
    李洁, 刘文胜, 蔡青山, 等. 粉末特性对30CrMnSiNi2A钢组织和性能的影响. 粉末冶金技术, 2022, 40(5): 441

    Li J, Liu W S, Cai Q S, et al. Effect of powder characteristics on microstructure and properties of 30CrMnSiNi2A steels. Powder Metall Technol, 2022, 40(5): 441
    [3]
    高莹, 顾毅, 吴艺辉, 等. 铁锰无磁合金粉的水雾化法生产工艺研究. 粉末冶金技术, 2018, 36(6): 465

    Gao Y, Gu Y, Wu Y H, et al. Research on production technology of nonmagnetic Fe-Mn alloy powders by water atomization. Powder Metall Technol, 2018, 36(6): 465
    [4]
    王峻, 周欣, 杜仲, 等. 紧耦合气雾化制备热喷涂NiCrAlY合金粉. 粉末冶金技术, 2023, 41(3): 225

    Wang J, Zhou X, Du Z, et al. Thermal spraying NiCrAlY alloy powders prepared by close-coupled gas atomization. Powder Metall Technol, 2023, 41(3): 225
    [5]
    孔水龙, 石磊, 厉峰, 等. 真空气雾化制备18Ni300马氏体时效钢粉末及其组织变化. 粉末冶金工业, 2021, 31(5): 11

    Kong S L, Shi L, Li F, et al. Microstructure of 18Ni300 maraging steel powder prepared by vacuum-induced-melt gas atomization. Powder Metall Ind, 2021, 31(5): 11
    [6]
    杨芳, 李延丽, 申承秀, 等. 钛及钛合金粉末制备与成形工艺研究进展. 粉末冶金技术, 2023, 41(4): 330

    Yang F, Li Y L, Shen C X, et al. Research progress on preparation and forming of titanium and titanium alloy powders. Powder Metall Technol, 2023, 41(4): 330
    [7]
    黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Power Metallurgy. Beijing: Metallurgical Industry Press, 2004
    [8]
    王博亚, 卢林, 吴文恒, 等. 气雾化制粉技术研究进展. 粉末冶金工业, 2019, 29(5): 74

    Wang B Y, Lu L, Wu W H, et al. The research progress of powder preparation technology by gas atomization. Powder Metall Ind, 2019, 29(5): 74
    [9]
    王博亚. 增材制造用18Ni300粉末的紧耦合气雾化制备技术研究[学位论文]. 上海: 上海材料研究所, 2019

    Wang B Y. The Research of Close-Coupled Gas Atomization Technology for Additive Manufacturing 18Ni300 Alloy Powders [Dissertation]. Shanghai: Shanghai Research Institute of Materials, 2019
    [10]
    Mates S P, Settles G S. A study of liquid metal atomization using close-coupled nozzles, Part 1: Gas dynamic behavior. Atomization Sprays, 2005, 15(1): 19 DOI: 10.1615/AtomizSpr.v15.i1.20
    [11]
    欧阳鸿武, 王琼, 刘卓民. 紧耦合气雾化流场结构突变过程的数值模拟. 粉末冶金材料科学与工程, 2010, 15(2): 96 DOI: 10.3969/j.issn.1673-0224.2010.02.002

    Ouyang H W, Wang Q, Liu Z M. Numerical study on abrupt change of flow field in close-coupled gas atomization. Mater Sci Eng Powder Metall, 2010, 15(2): 96 DOI: 10.3969/j.issn.1673-0224.2010.02.002
    [12]
    侯维强, 吴佳欣, 孟杰, 等. 不同雾化压力下GH3536合金粉末制备和气雾化过程模拟. 粉末冶金技术, 2023, 41(5): 410

    Hou W Q, Wu J X, Meng J, et al. Atomization simulation and preparation of GH3536 powders at different atomization pressures. Powder Metall Technol, 2023, 41(5): 410
    [13]
    Aydin O, Unal R. Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior. Comput Fluids, 2011, 42(1): 37 DOI: 10.1016/j.compfluid.2010.10.013
    [14]
    郭快快, 刘常升, 董欢欢, 等. 导管伸出长度对气雾化制备TC4粉末特性的影响. 东北大学学报(自然科学版), 2018, 39(6): 797

    Guo K K, Liu C S, Dong H H, et al. Effect of extension length of catheter on properties of TC4 powder prepared by electrode induction melting gas atomization. J Northeastern Univ Nat Sci, 2018, 39(6): 797
    [15]
    Anderson I E, Figliola R S, Morton H. Flow mechanisms in high pressure gas atomization. Mater Sci Eng A, 1991, 148(1): 101 DOI: 10.1016/0921-5093(91)90870-S
    [16]
    徐良辉, 周香林, 李景昊, 等. 基于回流区特性的气雾化喷嘴设计及流场结构模拟. 热喷涂技术, 2019, 11(3): 30

    Xu L H, Zhou X L, Li J H, et al. Design of atomizing nozzle and simulation of its flow field structure. Therm Spray Technol, 2019, 11(3): 30
    [17]
    Liu C, Li X, Shu S, et al. Numerical investigation on flow process of liquid metals in melt delivery nozzle during gas atomization process for fine metal powder production. Trans Nonferrous Met Soc China, 2021, 31(10): 3192 DOI: 10.1016/S1003-6326(21)65725-4
  • Related Articles

    [1]YANG Shu, CHEN Zhi, QI Chang, PEI Lianzheng, LIAO Xiangwei. Effect of melt tip taper angle on atomization process in gas atomization[J]. Powder Metallurgy Technology, 2024, 42(6): 573-581. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110008
    [2]SU Caijin, SUN Yaoning, DONG Kaiji, YIN Yan, ZHANG Ruihua, JIANG Liheng. Effect of melt delivery nozzle parameters on Fe–Cr alloy powders prepared by vacuum close-coupled gas atomization[J]. Powder Metallurgy Technology, 2024, 42(1): 68-74. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090016
    [3]LI Chang, CHEN Lei-lei, QU Zong-hong, LIU Kui-sheng, LAI Yun-jin, LIANG Shu-jin. Numerical simulation study of effect of die structure on the extrusion deformation of FGH4096 alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 277-283. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080014
    [4]WANG Yan, LIU Yu-meng, LIU Jiang-wei, WEI Ying-kang, ZHANG Liang-liang, WANG Jian-yong, SHANG Wei-wei, LIU Shi-feng. Research progress on numerical simulation of metal additive-manufacturing process[J]. Powder Metallurgy Technology, 2022, 40(2): 179-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120005
    [5]HOU Cheng-long, GUO Jun-qing, CHEN Fu-xiao, HUANG Tao. Metal powder injection molding technology and numerical simulation[J]. Powder Metallurgy Technology, 2022, 40(1): 72-79. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120007
    [6]YANG Dong-lin, DUAN Bo-hua, WANG De-zhi. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum[J]. Powder Metallurgy Technology, 2021, 39(3): 216-222. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030010
    [7]WANG Bo-ya, LU Lin, WU Wen-heng, XU Jiong-kai, WANG bin. Research on 18Ni300 alloy powders prepared by close-coupled gas atomization technology used for selective laser melting[J]. Powder Metallurgy Technology, 2020, 38(3): 222-226. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.010
    [8]MA Hai-ying, ZHANG Peng, GUO Zhi-jun. Simulation research on flow field characteristics of atomizing nozzle by circular seam air impact[J]. Powder Metallurgy Technology, 2018, 36(2): 148-152. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.02.012
    [9]Zhao Xinming, Xu Jun, Zhu Xuexin, Zhang Shaoming. Aspiration pressure varation at the tip of metal delivery tube in the supersonic atomization nozzle[J]. Powder Metallurgy Technology, 2010, 28(1): 21-25.
    [10]Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202.

Catalog

    Article Metrics

    Article views (971) PDF downloads (109) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return