Citation: | YANG Shu, CHEN Zhi, QI Chang, PEI Lianzheng, LIAO Xiangwei. Effect of melt tip taper angle on atomization process in gas atomization[J]. Powder Metallurgy Technology, 2024, 42(6): 573-581. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110008 |
Atomizing nozzle is the core component of the gas atomization process, which structural parameters, especially the melt tip taper angle of the delivery tube, have the great impact on the gas atomization results. Changing the taper angle of melt tip is more effective and economical than changing the atomization process parameters such as gas pressure and temperature. The computational fluid dynamics (CFD) method was used to simulate the internal flow field in the spray chamber with different melt tip taper angles in this paper. The commercial CFD software FLUENT was used to calculate and visualize the complex multiphase flow process in the closed spray chamber with high temperature and high pressure. The influence of various factors on the melt breaking effect in the single phase flow field was analyzed, and the volume of fluid (VOF) model was used to simulate the primary atomization process. The results show that the direction of air flow can be changed by changing the melt tip taper angle (16°, 22°, 28°, 34°, 40°, and 46°). With the change of taper angle, the stagnation point position, stagnation pressure, and suction pressure show the regular characteristics in single-phase flow field. The mass median diameter (MMD) of the primary atomization also varies with the change of melt tip taper angle. The droplet size distribution after primary atomization can be controlled by changing the melt tip taper angle. The minimum MMD is 304 μm when the melt tip taper angle is 34°.
[1] |
Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol, 2020, 367: 724
|
[2] |
Yu S S, Zhang P C, Qiu K H, et al. Preparation and characterization of 316L spherical powder for different uses by supersonic laminar flow atomization. Ferroelectric, 2018, 530(1): 25 DOI: 10.1080/00150193.2018.1454071
|
[3] |
Beckers D, Ellendt N, Fritsching U, et al. Impact of process flow conditions on particle morphology in metal powder production via gas atomization. Adv Powder Technol, 2020, 31(1): 300 DOI: 10.1016/j.apt.2019.10.022
|
[4] |
刘艳, 尤齐燊, 朱红梅, 等. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末. 粉末冶金技术, 2021, 39(6): 537
Liu Y, You Q S, Zhu H M, et al. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization. Powder Metall Technol, 2021, 39(6): 537
|
[5] |
Thompson J S, Hassan O, Rolland S A, et al. The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser. Powder Technol, 2016, 291: 75 DOI: 10.1016/j.powtec.2015.12.001
|
[6] |
Wang P, Li J, Wang X, et al. Impact mechanism of gas temperature in metal powder production via gas atomization. Chin Phys B, 2021, 30(5): 054702 DOI: 10.1088/1674-1056/abd75e
|
[7] |
王博亚, 卢林, 吴文恒, 等. 紧耦合气雾化技术制备选区激光熔化用18Ni300合金粉末的研究. 粉末冶金技术, 2020, 38(3): 222
Wang B Y, Lu L, Wu W H, et al. Research on 18Ni300 alloy powders prepared by close-coupled gas atomization technology used for selective laser melting. Powder Metall Technol, 2020, 38(3): 222
|
[8] |
Mates S P, Settles G S. A study of liquid metal atomization using close-coupled nozzles, Part 1: Gas dynamic behavior. Atomization Sprays, 2005, 15(1): 19 DOI: 10.1615/AtomizSpr.v15.i1.20
|
[9] |
侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展. 粉末冶金技术, 2022, 40(2): 131
Hou W Q, Meng J, Liang J J, et al. Preparation technology and research progress of superalloy powders used for additive manufacturing. Powder Metall Technol, 2022, 40(2): 131
|
[10] |
Ting J, Anderson I E. A computational fluid dynamics (CFD) investigation of the wake closure phenomenon. Mater Sci Eng A, 2004, 379(1-2): 264 DOI: 10.1016/j.msea.2004.02.065
|
[11] |
Li X G, Fritsching U. Process modeling pressure-swirl-gas-atomization for metal powder production. J Mater Process Technol, 2017, 239: 1 DOI: 10.1016/j.jmatprotec.2016.08.009
|
[12] |
Wang P, Li J, Wang X, et al. Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology. Chin Phys B, 2021, 30(2): 027502 DOI: 10.1088/1674-1056/abc167
|
[13] |
Ting J, Peretti M W, Eisen W B. The effect of wake-closure phenomenon on gas atomization performance. Mater Sci Eng A, 2002, 326(1): 110 DOI: 10.1016/S0921-5093(01)01437-X
|
[14] |
Aydin O, Unal R. Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior. Comput Fluids, 2011, 42(1): 37 DOI: 10.1016/j.compfluid.2010.10.013
|
[15] |
Arachchilage K H, Haghshenas M, Park S, et al. Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution. Adv Powder Technol, 2019, 30(11): 2726 DOI: 10.1016/j.apt.2019.08.019
|
[16] |
Urionabarrenetxea E, Martín J M, Avello A, et al. Simulation and validation of the gas flow in close-coupled gas atomisation process: Influence of the inlet gas pressure and the throat width of the supersonic gas nozzle. Powder Technol, 2022, 407: 117688 DOI: 10.1016/j.powtec.2022.117688
|
[17] |
Motaman S, Mullis A M, Cochrane R F, et al. Numerical and experimental modelling of back stream flow during close-coupled gas atomization. Comput Fluids, 2013, 88: 1 DOI: 10.1016/j.compfluid.2013.08.006
|
[18] |
Si C R, Zhang X J, Wang J B, et al. Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals. Int J Miner Metall Mater, 2014, 21: 627 DOI: 10.1007/s12613-014-0951-4
|
[19] |
Zeoli N, Gu S. Numerical modelling of droplet break-up for gas atomisation. Comput Mater Sci, 2006, 38(2): 282 DOI: 10.1016/j.commatsci.2006.02.012
|
[20] |
夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化法制备高温合金粉末中非限制式喷嘴的结构优化设计. 粉末冶金技术, 2019, 37(4): 288
Xia M, Wang P, Zhang X H, et al. Optimum structure design of free-fall nozzle in preparation process of superalloy powders by electrode induction gas atomization technology. Powder Metall Technol, 2019, 37(4): 288
|
[21] |
徐金鑫, 陈超越, 沈鹭宇, 等. 层流气体雾化制粉工艺粉末形貌及雾化机理. 物理学报, 2021, 70(14): 140201 DOI: 10.7498/aps.70.20202071
Xu J X, Chen C Y, Shen L Y, et al. Atomization mechanism and powder morphology in laminar flow gas atomization. Acta Phys Sin, 2021, 70(14): 140201 DOI: 10.7498/aps.70.20202071
|
[22] |
夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 41
Xia M, Wang P, Zhang X H, et al. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys Sin. 2018, 67(17): 41
|
[23] |
Faheem M, Khan A, Kumar R, et al. Estimation of Mach numbers in supersonic jets using schlieren images. Mater Today Proceed, 2021, 46(7): 2673
|
[24] |
Allimant A, Planche M P, Bailly Y, et al. Progress in gas atomization of liquid metals by means of a De Laval nozzle. Powder Technol, 2009, 190(1-2): 79 DOI: 10.1016/j.powtec.2008.04.071
|
1. |
鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .
![]() |