Citation: | GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001 |
[1] |
Armstrong R W. The hardness and strength properties of WC−Co composite. Materials, 2011, 4(7): 1287 DOI: 10.3390/ma4071287
|
[2] |
Bose A. A perspective on the earliest commercial PM metal-ceramic composite. Int J Powder Metall, 2011, 47(2): 31
|
[3] |
Kambakas K, Tsakiropoulos P. Solidification of high-Cr white cast iron WC particle reinforce steel matrix composites. Mater Sci Eng A, 2005, 413-414: 538 DOI: 10.1016/j.msea.2005.08.215
|
[4] |
李烨飞, 高义民, 王必辉, 等. WC− TiC− Co/Cr20复合材料的制备与界面特性. 稀有金属材料与工程, 2010, 39(4): 715
Li Y F, Gao Y M, Wang B H, et al. Fabrication and interface property of WC−TiC−Co/Cr20 composites. Rare Metal Mat Eng, 2010, 39(4): 715
|
[5] |
Gu J H, Xiao P A, Song J Y, et al. Sintering of a hypoeutectic high chromium cast iron as well as its microstructure and properties. J Alloys Compd, 2018, 740: 485 DOI: 10.1016/j.jallcom.2017.11.189
|
[6] |
李忠涛, 肖平安, 顾景洪, 等. 烧结Cr15高铬铸铁组织与性能的研究. 材料科学与工艺, 2020, 28(1): 7 DOI: 10.11951/j.issn.1005-0299.20180208
Li Z T, Xiao P A, Gu J H, et al. Study on microstructure and mechanical properties of Cr15 sintered high chromium cast iron. Mater Sci Technol, 2020, 28(1): 7 DOI: 10.11951/j.issn.1005-0299.20180208
|
[7] |
卢瑞青, 肖平安, 宋建勇, 等. 新型烧结高铬铸铁的冲击磨粒磨损性能. 粉末冶金材料科学与工程, 2018, 23(1): 70 DOI: 10.3969/j.issn.1673-0224.2018.01.010
Lu R Q, Xiao P A, Song J Y, et al. Impact abrasive wear resistance of a new type of sintered high chromium cast iron. Mater Sci Eng Powder Metall, 2018, 23(1): 70 DOI: 10.3969/j.issn.1673-0224.2018.01.010
|
[8] |
Wang Y S, Zhang X Y, Li F C, et al. Study on an Fe−TiC surface composite produced in situ. Mater Des, 1999, 20(5): 233 DOI: 10.1016/S0261-3069(98)00049-1
|
[9] |
Jiang J P, Li S B, Li H L, et al. Effect of in situ formed TiCx grains on the microstructural modification of high chromium white iron. J Alloys Compd, 2017, 726: 430 DOI: 10.1016/j.jallcom.2017.07.274
|
[10] |
Jiang J P, Li S B, Hu S L, et al. Effects of in situ formed TiCx on the microstructure, mechanical properties and abrasive wear behavior of a high chromium white iron. Mater Chem Phys, 2018, 214: 80 DOI: 10.1016/j.matchemphys.2018.04.041
|
[11] |
Ma S Q, Xing J D, He Y L, et al. Microstructure and crystallography of M7C3 carbide in chromium cast iron. Mater Chem Phys, 2015, 161: 65 DOI: 10.1016/j.matchemphys.2015.05.008
|
[12] |
Karantzalis A E, Lekatou A, Mavros H. Microstructural modifications of as-cast high-chromium white iron by heat treatment. J Mater Eng Perform, 2009, 18(2): 174 DOI: 10.1007/s11665-008-9285-6
|
[13] |
Wang J, Li C, Liu H H, et al. The precipitation and transformation of secondary carbides in a high chromium cast iron. Mater Charact, 2006, 56(1): 73 DOI: 10.1016/j.matchar.2005.10.002
|
[14] |
Liu H H, Wang J, Yang H S, et al. Effect of cryogenic treatment on property of 14Cr2Mo2V high chromium cast iron subjected to subcritical treatment. J Iron Steel Res, 2006, 13(6): 43 DOI: 10.1016/S1006-706X(06)60108-8
|
[15] |
Carpenter S D, Carpenter D, Pearce J T H. XRD and electron microscope study of a heat treated 26.6% chromium white iron microstructure. Mater Chem Phys, 2007, 101(1): 49 DOI: 10.1016/j.matchemphys.2006.02.013
|
1. |
段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 .
![]() | |
2. |
谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
![]() | |
3. |
刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 .
![]() |