AdvancedSearch
GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
Citation: GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001

Microstructure and mechanical properties of TiC particle enhanced high chromium iron

More Information
  • Corresponding author:

    XIAO Ping-an, E-mail: changcluj@163.com

  • Received Date: August 02, 2020
  • Available Online: July 19, 2021
  • TiC particle (TiCP) reinforced-sintered high chromium cast iron (HCCI) composites containing 20% Cr by mass were prepared by powder metallurgy (PM) and super solid phase line liquid phase sintering (SLPS). The effect of TiC particle content (mass fraction) on the phase composition, microstructure, and mechanical properties of the TiCP/HCCI composites was systematically studied by means of optical microscope, scanning electron microscope (SEM), and X-ray diffraction (XRD). The subsequent heat treatment research was also carried out. The results show that, the relative density of the TiCP/HCCI composites prepared by SLPS is above 97%, and the phase composition is composed of martensite, austenite, M7C3 carbide, and TiC. The TiC particles mainly distribute along the interface between the metal matrix and carbide in HCCI. With the increase of TiC content, the hardness of the composites increases to HRC 67.2, while the impact toughness decreases gradually. The fracture mechanism of the composites changes from the quasi cleavage fracture to the inter-granular cleavage fracture. After the quenched treatment, the hardness of the TiCP/HCCI composites can be further increased to HRC 69.3, which are expected to be the excellent wear-resistant materials with the hardness between HCCI and cemented carbide.
  • [1]
    Armstrong R W. The hardness and strength properties of WC−Co composite. Materials, 2011, 4(7): 1287 DOI: 10.3390/ma4071287
    [2]
    Bose A. A perspective on the earliest commercial PM metal-ceramic composite. Int J Powder Metall, 2011, 47(2): 31
    [3]
    Kambakas K, Tsakiropoulos P. Solidification of high-Cr white cast iron WC particle reinforce steel matrix composites. Mater Sci Eng A, 2005, 413-414: 538 DOI: 10.1016/j.msea.2005.08.215
    [4]
    李烨飞, 高义民, 王必辉, 等. WC− TiC− Co/Cr20复合材料的制备与界面特性. 稀有金属材料与工程, 2010, 39(4): 715

    Li Y F, Gao Y M, Wang B H, et al. Fabrication and interface property of WC−TiC−Co/Cr20 composites. Rare Metal Mat Eng, 2010, 39(4): 715
    [5]
    Gu J H, Xiao P A, Song J Y, et al. Sintering of a hypoeutectic high chromium cast iron as well as its microstructure and properties. J Alloys Compd, 2018, 740: 485 DOI: 10.1016/j.jallcom.2017.11.189
    [6]
    李忠涛, 肖平安, 顾景洪, 等. 烧结Cr15高铬铸铁组织与性能的研究. 材料科学与工艺, 2020, 28(1): 7 DOI: 10.11951/j.issn.1005-0299.20180208

    Li Z T, Xiao P A, Gu J H, et al. Study on microstructure and mechanical properties of Cr15 sintered high chromium cast iron. Mater Sci Technol, 2020, 28(1): 7 DOI: 10.11951/j.issn.1005-0299.20180208
    [7]
    卢瑞青, 肖平安, 宋建勇, 等. 新型烧结高铬铸铁的冲击磨粒磨损性能. 粉末冶金材料科学与工程, 2018, 23(1): 70 DOI: 10.3969/j.issn.1673-0224.2018.01.010

    Lu R Q, Xiao P A, Song J Y, et al. Impact abrasive wear resistance of a new type of sintered high chromium cast iron. Mater Sci Eng Powder Metall, 2018, 23(1): 70 DOI: 10.3969/j.issn.1673-0224.2018.01.010
    [8]
    Wang Y S, Zhang X Y, Li F C, et al. Study on an Fe−TiC surface composite produced in situ. Mater Des, 1999, 20(5): 233 DOI: 10.1016/S0261-3069(98)00049-1
    [9]
    Jiang J P, Li S B, Li H L, et al. Effect of in situ formed TiCx grains on the microstructural modification of high chromium white iron. J Alloys Compd, 2017, 726: 430 DOI: 10.1016/j.jallcom.2017.07.274
    [10]
    Jiang J P, Li S B, Hu S L, et al. Effects of in situ formed TiCx on the microstructure, mechanical properties and abrasive wear behavior of a high chromium white iron. Mater Chem Phys, 2018, 214: 80 DOI: 10.1016/j.matchemphys.2018.04.041
    [11]
    Ma S Q, Xing J D, He Y L, et al. Microstructure and crystallography of M7C3 carbide in chromium cast iron. Mater Chem Phys, 2015, 161: 65 DOI: 10.1016/j.matchemphys.2015.05.008
    [12]
    Karantzalis A E, Lekatou A, Mavros H. Microstructural modifications of as-cast high-chromium white iron by heat treatment. J Mater Eng Perform, 2009, 18(2): 174 DOI: 10.1007/s11665-008-9285-6
    [13]
    Wang J, Li C, Liu H H, et al. The precipitation and transformation of secondary carbides in a high chromium cast iron. Mater Charact, 2006, 56(1): 73 DOI: 10.1016/j.matchar.2005.10.002
    [14]
    Liu H H, Wang J, Yang H S, et al. Effect of cryogenic treatment on property of 14Cr2Mo2V high chromium cast iron subjected to subcritical treatment. J Iron Steel Res, 2006, 13(6): 43 DOI: 10.1016/S1006-706X(06)60108-8
    [15]
    Carpenter S D, Carpenter D, Pearce J T H. XRD and electron microscope study of a heat treated 26.6% chromium white iron microstructure. Mater Chem Phys, 2007, 101(1): 49 DOI: 10.1016/j.matchemphys.2006.02.013
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return