AdvancedSearch
GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
Citation: GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001

Microstructure and mechanical properties of TiC particle enhanced high chromium iron

More Information
  • Corresponding author:

    XIAO Ping-an, E-mail: changcluj@163.com

  • Received Date: August 02, 2020
  • Available Online: July 19, 2021
  • TiC particle (TiCP) reinforced-sintered high chromium cast iron (HCCI) composites containing 20% Cr by mass were prepared by powder metallurgy (PM) and super solid phase line liquid phase sintering (SLPS). The effect of TiC particle content (mass fraction) on the phase composition, microstructure, and mechanical properties of the TiCP/HCCI composites was systematically studied by means of optical microscope, scanning electron microscope (SEM), and X-ray diffraction (XRD). The subsequent heat treatment research was also carried out. The results show that, the relative density of the TiCP/HCCI composites prepared by SLPS is above 97%, and the phase composition is composed of martensite, austenite, M7C3 carbide, and TiC. The TiC particles mainly distribute along the interface between the metal matrix and carbide in HCCI. With the increase of TiC content, the hardness of the composites increases to HRC 67.2, while the impact toughness decreases gradually. The fracture mechanism of the composites changes from the quasi cleavage fracture to the inter-granular cleavage fracture. After the quenched treatment, the hardness of the TiCP/HCCI composites can be further increased to HRC 69.3, which are expected to be the excellent wear-resistant materials with the hardness between HCCI and cemented carbide.
  • [1]
    Armstrong R W. The hardness and strength properties of WC−Co composite. Materials, 2011, 4(7): 1287 DOI: 10.3390/ma4071287
    [2]
    Bose A. A perspective on the earliest commercial PM metal-ceramic composite. Int J Powder Metall, 2011, 47(2): 31
    [3]
    Kambakas K, Tsakiropoulos P. Solidification of high-Cr white cast iron WC particle reinforce steel matrix composites. Mater Sci Eng A, 2005, 413-414: 538 DOI: 10.1016/j.msea.2005.08.215
    [4]
    李烨飞, 高义民, 王必辉, 等. WC− TiC− Co/Cr20复合材料的制备与界面特性. 稀有金属材料与工程, 2010, 39(4): 715

    Li Y F, Gao Y M, Wang B H, et al. Fabrication and interface property of WC−TiC−Co/Cr20 composites. Rare Metal Mat Eng, 2010, 39(4): 715
    [5]
    Gu J H, Xiao P A, Song J Y, et al. Sintering of a hypoeutectic high chromium cast iron as well as its microstructure and properties. J Alloys Compd, 2018, 740: 485 DOI: 10.1016/j.jallcom.2017.11.189
    [6]
    李忠涛, 肖平安, 顾景洪, 等. 烧结Cr15高铬铸铁组织与性能的研究. 材料科学与工艺, 2020, 28(1): 7 DOI: 10.11951/j.issn.1005-0299.20180208

    Li Z T, Xiao P A, Gu J H, et al. Study on microstructure and mechanical properties of Cr15 sintered high chromium cast iron. Mater Sci Technol, 2020, 28(1): 7 DOI: 10.11951/j.issn.1005-0299.20180208
    [7]
    卢瑞青, 肖平安, 宋建勇, 等. 新型烧结高铬铸铁的冲击磨粒磨损性能. 粉末冶金材料科学与工程, 2018, 23(1): 70 DOI: 10.3969/j.issn.1673-0224.2018.01.010

    Lu R Q, Xiao P A, Song J Y, et al. Impact abrasive wear resistance of a new type of sintered high chromium cast iron. Mater Sci Eng Powder Metall, 2018, 23(1): 70 DOI: 10.3969/j.issn.1673-0224.2018.01.010
    [8]
    Wang Y S, Zhang X Y, Li F C, et al. Study on an Fe−TiC surface composite produced in situ. Mater Des, 1999, 20(5): 233 DOI: 10.1016/S0261-3069(98)00049-1
    [9]
    Jiang J P, Li S B, Li H L, et al. Effect of in situ formed TiCx grains on the microstructural modification of high chromium white iron. J Alloys Compd, 2017, 726: 430 DOI: 10.1016/j.jallcom.2017.07.274
    [10]
    Jiang J P, Li S B, Hu S L, et al. Effects of in situ formed TiCx on the microstructure, mechanical properties and abrasive wear behavior of a high chromium white iron. Mater Chem Phys, 2018, 214: 80 DOI: 10.1016/j.matchemphys.2018.04.041
    [11]
    Ma S Q, Xing J D, He Y L, et al. Microstructure and crystallography of M7C3 carbide in chromium cast iron. Mater Chem Phys, 2015, 161: 65 DOI: 10.1016/j.matchemphys.2015.05.008
    [12]
    Karantzalis A E, Lekatou A, Mavros H. Microstructural modifications of as-cast high-chromium white iron by heat treatment. J Mater Eng Perform, 2009, 18(2): 174 DOI: 10.1007/s11665-008-9285-6
    [13]
    Wang J, Li C, Liu H H, et al. The precipitation and transformation of secondary carbides in a high chromium cast iron. Mater Charact, 2006, 56(1): 73 DOI: 10.1016/j.matchar.2005.10.002
    [14]
    Liu H H, Wang J, Yang H S, et al. Effect of cryogenic treatment on property of 14Cr2Mo2V high chromium cast iron subjected to subcritical treatment. J Iron Steel Res, 2006, 13(6): 43 DOI: 10.1016/S1006-706X(06)60108-8
    [15]
    Carpenter S D, Carpenter D, Pearce J T H. XRD and electron microscope study of a heat treated 26.6% chromium white iron microstructure. Mater Chem Phys, 2007, 101(1): 49 DOI: 10.1016/j.matchemphys.2006.02.013
  • Related Articles

    [1]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [2]YOU Yuanqi, LI Caiju, YANG Chao, XING Yuan, PENG Yanzhi, YI Jianhong. Effect of ball milling process on microstructure and mechanical properties of CNTs/Al composites[J]. Powder Metallurgy Technology, 2024, 42(4): 331-337, 345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100003
    [3]XIA Pengzhao, XU Ying, CAI Yanqing, ZHAO Sitan, SONG Pan. Effect of ball milling process on mechanical properties of medical Ti–Mg composites[J]. Powder Metallurgy Technology, 2024, 42(2): 192-199. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090013
    [4]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [5]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [6]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [7]Xiao Guangtao, Liu Ying, Ye Jinwen, Xie Hong. The influence of different content of (W, Ta)C composite carbide on microstructure and properties of WC-10Co cemented carbide[J]. Powder Metallurgy Technology, 2013, 31(5): 355-359. DOI: 10.3969/j.issn.1001-3784.2013.05.007
    [8]Lü Meng, Mao Changhui, Yang Jian, Liang Qiushi. Effect of extrusion ratio on mechanical properties of Wp/AZ91Mg composites[J]. Powder Metallurgy Technology, 2011, 29(6): 443-447.
    [9]Cheng Nanpu, Zeng Sumin, Yu Wenbin, Chen Zhiqian. Preparation and mechanical properties of 12%SiCP/Al composites[J]. Powder Metallurgy Technology, 2006, 24(6): 417-420,426. DOI: 10.3321/j.issn:1001-3784.2006.06.004
    [10]Jiang Yang, Xu Yufen. Study on Mechanical Properties of SiCw/ZTA(Y) Ceramic Composites[J]. Powder Metallurgy Technology, 1997, 15(3): 169-173.
  • Cited by

    Periodical cited type(1)

    1. 钟韬,郭荣臻,林晓川,柳龙婷,王佳鑫,徐志强,郭世柏. 等离子烧结工艺对WC/Cr_3C_2/La_2O_3刀具材料力学性能的影响. 粉末冶金技术. 2024(06): 582-588 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (418) PDF downloads (44) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return