Citation: | LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007 |
The ceramic particle reinforced Fe‒0.5Mo‒1.75Ni‒1.5Cu‒0.7C diffusion alloyed steel composites were prepared by the conventional powder metallurgy techniques, using SiC, TiC, and TiB2 as the reinforced ceramic particles, respectively. The microstructures of the sintered specimens were observed by the optical microscope and scanning electron microscope, and the hardness, tensile strength, and friction-wear performance were tested systematically. In the results, the interface bonding between the matrix and the ceramic particles is perfect due to the excellent chemical compatibility of SiC and TiB2 with the matrix; the interface bonding between the matrix and TiC particles is inferior because of the high chemical stability. The relative density of the sintered specimens reinforced by SiC and TiC decreases monotonously with the increase of the ceramic phase mass fraction; while the relative density of the sintered specimens reinforced by TiB2 increases firstly and then decreases with the increase of TiB2 mass fraction, and the relative density reaches the maximum value when the TiB2 mass fraction is 0.9%. The hardness of the sintered specimens reinforced by SiC and TiB2 increases monotonously with the increase of the ceramic phase mass fraction, and the increased rate becomes gently when the ceramic particle mass fraction exceeds 1.2%; the hardness of the sintered specimens reinforced by TiC increases firstly and then decreases with the increase of TiC mass fraction and reaches the maximum value when the TiC mass fraction is 0.9%. The tensile strength of the sintered specimens reinforced by SiC and TiC decreases monotonously with the increase of the ceramic particle mass fraction, a small amount of SiC addition has no visible impairment on the tensile strength; the tensile strength of the sintered specimens reinforced by TiB2 increases firstly and then decreases and reaches the maximum value of 971.7 MPa when the TiB2 mass fraction is 0.6%, which increases by over 14.1% compared with the martrix. The positive effect of the ceramic particles on the performance of the sintered specimens is TiB2, SiC, TiC in turn.
[1] |
叶璇, 涂华锦, 邱志文, 等. WC含量对Fe‒1.5Cu‒1.8Ni‒0.5Mo‒1C粉末冶金复合材料的孔隙形貌与性能的影响. 热加工工艺, 2019, 48(22): 89
Ye X, Tu H J, Qiu Z W, et al. Effect of WC content on pore morphology and properties of Fe‒1.5Cu‒1.8Ni‒0.5Mo‒1C powder metallurgy composites. Hot Working Technol, 2019, 48(22): 89
|
[2] |
汝娟坚, 贺函. 陶瓷颗粒增强金属基复合材料的制备方法及研究进展. 科技创新与应用, 2019, 19(2): 116 DOI: 10.3969/j.issn.2095-2945.2019.02.048
Ru J J, He H. Preparation methods and research progress of ceramic particle reinforced metal matrix composites. Technol Innov Appl, 2019, 19(2): 116 DOI: 10.3969/j.issn.2095-2945.2019.02.048
|
[3] |
庞雅丹. TiC/NbC陶瓷颗粒增强Fe基复合材料的制备及工艺研究[学位论文]. 包头: 内蒙古科技大学, 2020
Pang Y D. Preparation and Properties of TiC/NbC Ceramic Reinforced Fe Matrix Composites [Dissertation]. Baotou: Inner Mongolia University of Science and Technology, 2020
|
[4] |
曹建新, 金剑锋, 曹敬袆, 等. 不同类型颗粒混合增强铁基复合材料的磨损性能. 材料工程, 2017, 45(8): 62 DOI: 10.11868/j.issn.1001-4381.2015.001136
Cao J X, Jin J F, Cao J H, et al. Wear resistance of iron matrix composites reinforced by mixed-type particles. J Mater Eng, 2017, 45(8): 62 DOI: 10.11868/j.issn.1001-4381.2015.001136
|
[5] |
庄伟斌, 韩明明, 刘敬福, 等. 陶瓷颗粒增强铁基复合材料的研究进展. 热加工工艺, 2018, 47(4): 40 DOI: 10.14158/j.cnki.1001-3814.2018.04.009
Zhuang W B, Han M M, Liu J F, et al. Research progress of ceramic particle reinforced iron matrix composites. Hot Working Technol, 2018, 47(4): 40 DOI: 10.14158/j.cnki.1001-3814.2018.04.009
|
[6] |
谭傲霜. SiC/TiB2颗粒颗粒混杂增强铝基复合材料力学及摩擦磨损性能研究[学位论文]. 长沙: 湖南大学, 2017
Tan A S. Research on Mechanical and Tribological Properties of Aluminium Matrix Composites Reinforced with Hybrid SiC Microparticles and TiB2 Nanoparticles [Dissertation]. Changsha: Hunan University, 2017
|
[7] |
Deirmina F, Pellizzari M. Production and characterization of a tool steel-PSZ composite by mechanical alloying and spark plasma sintering. J Alloys Compd, 2017, 709: 742 DOI: 10.1016/j.jallcom.2017.03.203
|
[8] |
管丹丹. 粉末冶金法制备陶瓷颗粒增强316L不锈钢基复合材料及其性能[学位论文]. 北京: 北京科技大学, 2018
Guan D D. Preparation and Properties of Ceramic Particle Reinforced 316L Stainless Steel Matrix Composites by Powder Metallurgy [Dissertation]. Beijing: Beijing University of Science and Technology, 2018
|
[9] |
Kumar A, Banerjee M K, Pandel U. Development of a novel MWCNT reinforced iron matrix nanocomposite through powder metallurgy route. Powder Technol, 2018, 331: 41 DOI: 10.1016/j.powtec.2018.03.009
|
[10] |
韩明明, 刘敬福, 庄伟彬, 等. SiCp/Fe复合材料的热疲劳性能研究. 热加工工艺, 2019, 48(16): 89
Han M M, Liu J F, Zhuang W B, et al. Study on thermal fatigue properties of SiCp/Fe composites. Hot Working Technol, 2019, 48(16): 89
|
[11] |
种详远, 甄明晖, 仇溢, 等. α-SiC粉体化学镀铜及其对铁基复合材料性能的影响. 表面技术, 2018, 47(3): 244 DOI: 10.16490/j.cnki.issn.1001-3660.2018.03.039
Zhong X Y, Zhen M H, Qiu Y, et al. Electroless copper plating on α-SiC powder and its effect on the properties of α-SiC/Fe composites. Surf Technol, 2018, 47(3): 244 DOI: 10.16490/j.cnki.issn.1001-3660.2018.03.039
|
[12] |
高前程, 代巧飞, 王彬彬, 等. Ni包裹SiC对SiC(Ni)/Fe复合材料性能的影响. 现代技术陶瓷, 2017, 38(2): 108 DOI: 10.16253/j.cnki.37-1226/tq.2016.11.003
Gao Q C, Dai Q F, Wang B B, et al. Effect of Ni-coated SiC particles on mechanical properties of SiC(Ni)/Fe composite. Adv Ceram, 2017, 38(2): 108 DOI: 10.16253/j.cnki.37-1226/tq.2016.11.003
|
[13] |
郭远博. 硼化钛颗粒增强铁基复合材料的力学性能及干摩擦磨损行为研究[学位论文]. 成都: 西南交通大学, 2018
Guo Y B. Study on Mechanical Properties and Dry Friction and Wear Behavior of TiB2 Particle Reinforced Iron Matrix Composites [Dissertation]. Chengdu: Southwest Jiaotong University, 2018
|
[14] |
樊少忠, 钟黎声, 程仕李, 等. 原位制备碳化钛颗粒增强钢铁基复合材料研究现状. 热加工工艺, 2015, 44(10): 16 DOI: 10.14158/j.cnki.1001-3814.2015.10.004
Fan S Z, Zhong L S, Cheng S L, et al. Research status of in-situ titanium carbide particle reinforced steel matrix composite. Hot Working Technol, 2015, 44(10): 16 DOI: 10.14158/j.cnki.1001-3814.2015.10.004
|
[15] |
Tang W M, Zheng Z X, Ding H F, et al. A study of solid state reaction between silicon carbide and iron. Mater Chem Phys, 2002, 74(3): 258 DOI: 10.1016/S0254-0584(01)00480-1
|
[16] |
何勤求, 李普明, 袁勇, 等. 陶瓷颗粒增强粉末冶金Fe‒2Cu‒0.6C复合材料的微观结构和力学性能. 粉末冶金技术, 2019, 37(1): 11
He Q Q, Li P M, Yuan Y, et al. Microstructure and mechanical properties of ceramic particle reinforced powder metallurgy Fe‒2Cu‒0.6C composites. Powder Metall Technol, 2019, 37(1): 11
|
[1] | YANG Guang, LI Gemin, WEI Bangzheng, XU Dang, CHEN Pengqi, CHENG Jigui. Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology[J]. Powder Metallurgy Technology, 2025, 43(1): 12-19. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001 |
[2] | ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010 |
[3] | La Peiqing, Han Shaobo, Lu Xuefeng, Ju Qian, Wei Yupeng. Study of the influence of different stoichometry of Mg in starting mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1): 3-8,13. DOI: 10.3969/j.issn.1001-3784.2013.01.001 |
[4] | Tian Ding, Zhao Yanmin, Wu Xiaolin, Wang Xiuhui, Gao Hong, Zhai Yuchun. The preparation techniques of lanthanum aluminate ultra-fine powders[J]. Powder Metallurgy Technology, 2009, 27(5): 377-380. |
[5] | Sun Weimin, Jin Shouri, Yu Ying. PREPARATION AND CHARACTERIZATION OF Ni-TiN ULTRAFINE POWDER[J]. Powder Metallurgy Technology, 2000, 18(3): 183-186. |
[6] | Sun Weimin, Jin Shouri. Continuous Production of Ultrafine Iron Powder[J]. Powder Metallurgy Technology, 1997, 15(3): 199-202. |
[7] | Zheng Jie, Lü Zhenhe, Gan Zhangyan. DEVELOPMENT TO SUPERIOR QUALITY ULTRAFINE PALLADIUM POWDER[J]. Powder Metallurgy Technology, 1995, 13(2): 112-115. |
[8] | Zhong Junhui. MANUFACTURE PROCESS OF NANOMETER POWDER[J]. Powder Metallurgy Technology, 1995, 13(1): 48-56. |
[9] | Ge Rongde, Zhao Tiancong, Liu Zhihong, Chen Huiguang, Zhang Duomo. APPLICATION OF A NEW AGGLOMERATION PARAMETER IN CHARACTERIZING THE STATE OF AGGLOMERATION OF ULTRAFINE ZIRCONIA POWDERS[J]. Powder Metallurgy Technology, 1994, 12(2): 87-90. |
[10] | Xu Mingxia, Guo Ruisong, Yang Zhengfang, Shi Guoshun. SURFACE MODIFICATION OF ULTRAFINE CERAMIC POWDERS[J]. Powder Metallurgy Technology, 1993, 11(1): 19-24. |
1. |
荣智峥,高阳,张朔,马佳俊,孙德建. 球磨时间及热处理工艺对6061铝合金组织与性能的影响. 材料工程. 2023(10): 136-145 .
![]() | |
2. |
韩国强,王玮玮,李晓艳. 粉末烧结对Mg-Sc合金微观组织和力学性能的影响. 粉末冶金技术. 2023(06): 548-553 .
![]() | |
3. |
余聪,陈乐平,周全. 稀土元素对铝合金组织与性能影响的研究进展. 特种铸造及有色合金. 2021(02): 241-246 .
![]() | |
4. |
郭江,李荣,牛海云. 铈对6063铝合金组织和综合性能的影响. 中国稀土学报. 2021(02): 275-281 .
![]() |