AdvancedSearch
ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010
Citation: ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010

Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction

More Information
  • Corresponding author:

    ZHANG Guo-Hua, E-mail: ghzhang0914@ustb.edu.cn

  • Received Date: January 15, 2021
  • Available Online: July 26, 2021
  • The pre-reduction molybdenum powders containing minor amount of MoO2 were prepared by the carbothermic reduction of MoO3, using the carbon black as the reducing agent, then the obtained pre-reduction molybdenum powders were deep reduced by hydrogen to finally prepare the ultrafine molybdenum powders with the average particle size of 99 nm to 190 nm. The effects of the carbothermic reduction temperature on the particle size and the residual carbon content by mass of the ultrafine molybdenum powders were studied. In the results, with the increase of C/MoO3 molar ratio from 2.0 to 2.1, the particle sizes of the ultrafine molybdenum powder products change little at the same reduction temperature. But the carbothermal reduction temperature shows a significant effect on the particle size and purity of products. When the C/MoO3 molar ratio is 2.1, with the increase of reduction temperature from 950 ℃ to 1150 ℃, the average particle sizes of products increase from 100 nm to 190 nm, and the content of the residual carbon by mass decreases from 0.030% to 0.009% after the hydrogen reduction.
  • [1]
    Gu S, Qin M, Zhang H, et al. Preparation of Mo nanopowders through hydrogen reduction of a combustion synthesized foam-like MoO2 precursor. Int J Refract Met Hard Mater, 2018, 76: 90 DOI: 10.1016/j.ijrmhm.2018.05.015
    [2]
    Wang L, Zhang G H, Wang J S, et al. Study on hydrogen reduction of ultrafine MoO2 to produce ultrafine Mo. J Phys Chem C, 2016, 120(7): 4097 DOI: 10.1021/acs.jpcc.5b11394
    [3]
    Sun G D, Zhang G H, Jiao S Q, et al. Shape-controlled synthesis of ultrafine molybdenum crystals via salt-assisted reduction of MoO2 with H2. J Phys Chem C, 2018, 122(18): 10231 DOI: 10.1021/acs.jpcc.8b01236
    [4]
    Ku J G, Oh J M, Kwon H, et al. High-temperature hydrogen-reduction process for the preparation of low-oxygen Mo powder from MoO3. Int J Hydrogen Energy, 2017, 42(4): 2139 DOI: 10.1016/j.ijhydene.2016.09.004
    [5]
    Zhang G J, Sun Y J, Niu R M, et al. Microstructure and strengthening mechanism of oxide lanthanum dispersion strengthened molybdenum alloy. Adv Eng Mater, 2004, 6(12): 943 DOI: 10.1002/adem.200400072
    [6]
    Kang J, Sun X, Deng K, et al. High strength Mg-9Al serial alloy processed by slow extrusion. Mater Sci Eng A, 2017, 697: 211 DOI: 10.1016/j.msea.2017.05.017
    [7]
    Kim G S, Lee Y J, Kim D G, et al. Consolidation behavior of Mo powder fabricated from milled Mo oxide by hydrogen-reduction. J Alloys Compd, 2008, 454(1-2): 327 DOI: 10.1016/j.jallcom.2006.12.039
    [8]
    Dang J, Zhang G H, Chou K C. Study on kinetics of hydrogen reduction of MoO2. Int J Refract Met Hard Mater, 2013, 41: 356 DOI: 10.1016/j.ijrmhm.2013.05.009
    [9]
    Bolitschek J, Luidold S, O'Sullivan M. A study of the impact of reduction conditions on molybdenum morphology. Int J Refract Met Hard Mater, 2018, 71: 325 DOI: 10.1016/j.ijrmhm.2017.11.037
    [10]
    Millner T, Neugebauer J. Volatility of the oxides of tungsten and molybdenum in the presence of water vapour. Nature, 1949, 163(4146): 601
    [11]
    Lenz M, Gruehn R. Developments in measuring and calculating chemical vapor transport phenomena demonstrated on Cr, Mo, W, and their compounds. Chem Rev, 1997, 97(8): 2967 DOI: 10.1021/cr940313a
    [12]
    Schulmeyer W V, Ortner H M. Mechanisms of the hydrogen reduction of molybdenum oxides. Int J Refract Met Hard Mater, 2002, 20(4): 261 DOI: 10.1016/S0263-4368(02)00029-X
    [13]
    Sun G D, Zhang G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black. JOM, 2020, 72: 347 DOI: 10.1007/s11837-019-03445-4
    [14]
    Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Vienna: Vienna University of Technology, 1999
    [15]
    L’ vov B V. Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim Acta, 2000, 360(2): 109 DOI: 10.1016/S0040-6031(00)00540-2
    [16]
    Venables D S, Brown M E. Reduction of tungsten oxides with carbon. Part 1: Thermal analyses. Thermochim Acta, 1996, 282-283: 251 DOI: 10.1016/0040-6031(95)02814-5
    [17]
    Wang L, Zhang G H, Sun Y J, et al. Preparation of ultrafine β-MoO3 from industrial grade MoO3 powder by the method of sublimation. J Phys Chem C, 2016, 120(35): 19821 DOI: 10.1021/acs.jpcc.6b05982
    [18]
    Wang L, Zhang G H, Chou K C. Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. Int J Refract Met Hard Mater, 2016, 54: 342 DOI: 10.1016/j.ijrmhm.2015.09.003
    [19]
    Wang L, Zhang G H, Chou K C. Synthesis of nanocrystalline molybdenum powder by hydrogen reduction of industrial grade MoO3. Int J Refract Met Hard Mater, 2016, 59: 100 DOI: 10.1016/j.ijrmhm.2016.06.001
    [20]
    Zhang G H, Li J J, Wang L, et al. Effects of R2CO3 (R= Li, Na and K) on the reduction of MoO2 to Mo by hydrogen. Int J Refract Met Hard Mater, 2017, 69: 180 DOI: 10.1016/j.ijrmhm.2017.08.014
    [21]
    Sun G D, Wang K F, Ji X P, et al. Preparation of ultrafine/nano Mo particles via NaCl-assisted hydrogen reduction of different-sized MoO2 powders. Int J Refract Met Hard Mater, 2019, 80: 243 DOI: 10.1016/j.ijrmhm.2019.01.020
    [22]
    Sun G D, Zhang G H, Chou K C. Preparation of Mo nanoparticles through hydrogen reduction of commercial MoO2 with the assistance of molten salt. Int J Refract Met Hard Mater, 2019, 78: 68 DOI: 10.1016/j.ijrmhm.2018.08.014
    [23]
    Zhang Y, Jiao S Q, Chou K C, et al. Size-controlled synthesis of Mo powders via hydrogen reduction of MoO2 powders with the assistance of Mo nuclei. Int J Hydrogen Energy, 2020, 45(3): 1435 DOI: 10.1016/j.ijhydene.2019.11.008
    [24]
    Wang D H, Sun G D, Zhang G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. Int J Refract Met Hard Mater, 2018, 75: 70 DOI: 10.1016/j.ijrmhm.2018.04.002
    [25]
    Sun G D, Zhang G H, Ji X P, et al. Size-controlled synthesis of nano Mo powders via reduction of commercial MoO3 with carbon black and hydrogen. Int J Refract Met Hard Mater, 2019, 80: 11 DOI: 10.1016/j.ijrmhm.2018.12.019
  • Related Articles

    [1]YANG Guang, LI Gemin, WEI Bangzheng, XU Dang, CHEN Pengqi, CHENG Jigui. Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology[J]. Powder Metallurgy Technology, 2025, 43(1): 12-19. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001
    [2]ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010
    [3]La Peiqing, Han Shaobo, Lu Xuefeng, Ju Qian, Wei Yupeng. Study of the influence of different stoichometry of Mg in starting mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1): 3-8,13. DOI: 10.3969/j.issn.1001-3784.2013.01.001
    [4]Tian Ding, Zhao Yanmin, Wu Xiaolin, Wang Xiuhui, Gao Hong, Zhai Yuchun. The preparation techniques of lanthanum aluminate ultra-fine powders[J]. Powder Metallurgy Technology, 2009, 27(5): 377-380.
    [5]Sun Weimin, Jin Shouri, Yu Ying. PREPARATION AND CHARACTERIZATION OF Ni-TiN ULTRAFINE POWDER[J]. Powder Metallurgy Technology, 2000, 18(3): 183-186.
    [6]Sun Weimin, Jin Shouri. Continuous Production of Ultrafine Iron Powder[J]. Powder Metallurgy Technology, 1997, 15(3): 199-202.
    [7]Zheng Jie, Lü Zhenhe, Gan Zhangyan. DEVELOPMENT TO SUPERIOR QUALITY ULTRAFINE PALLADIUM POWDER[J]. Powder Metallurgy Technology, 1995, 13(2): 112-115.
    [8]Zhong Junhui. MANUFACTURE PROCESS OF NANOMETER POWDER[J]. Powder Metallurgy Technology, 1995, 13(1): 48-56.
    [9]Ge Rongde, Zhao Tiancong, Liu Zhihong, Chen Huiguang, Zhang Duomo. APPLICATION OF A NEW AGGLOMERATION PARAMETER IN CHARACTERIZING THE STATE OF AGGLOMERATION OF ULTRAFINE ZIRCONIA POWDERS[J]. Powder Metallurgy Technology, 1994, 12(2): 87-90.
    [10]Xu Mingxia, Guo Ruisong, Yang Zhengfang, Shi Guoshun. SURFACE MODIFICATION OF ULTRAFINE CERAMIC POWDERS[J]. Powder Metallurgy Technology, 1993, 11(1): 19-24.
  • Cited by

    Periodical cited type(4)

    1. 荣智峥,高阳,张朔,马佳俊,孙德建. 球磨时间及热处理工艺对6061铝合金组织与性能的影响. 材料工程. 2023(10): 136-145 .
    2. 韩国强,王玮玮,李晓艳. 粉末烧结对Mg-Sc合金微观组织和力学性能的影响. 粉末冶金技术. 2023(06): 548-553 . 本站查看
    3. 余聪,陈乐平,周全. 稀土元素对铝合金组织与性能影响的研究进展. 特种铸造及有色合金. 2021(02): 241-246 .
    4. 郭江,李荣,牛海云. 铈对6063铝合金组织和综合性能的影响. 中国稀土学报. 2021(02): 275-281 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (500) PDF downloads (25) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return