Citation: | YANG Guang, LI Gemin, WEI Bangzheng, XU Dang, CHEN Pengqi, CHENG Jigui. Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology[J]. Powder Metallurgy Technology, 2025, 43(1): 12-19. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001 |
Cu–20%W (mass fraction) ultrafine composite powders were prepared by the combination of sol–gel with hydrogen reduction method, using ammonium metatungstate and copper nitrate as the raw materials, and the Cu–20W samples were obtained by pressing and sintering. The morphology and particle size of the powders were characterized, and the effects of sintering temperatures on the microstructure and properties of the Cu–20W sintered samples were investigated. The results show that the Cu–20W composite powders are obtained by the combination of sol–gel with hydrogen reduction method with the average particle size of less than 100 nm. With the increase of sintering temperature, the physical and mechanical properties of the sintered Cu–20W samples are improved. The relative density of the samples sintered at
[1] |
Zheng L L, Liu J X, Li S K, et al. Preparation and properties of W–Cu–Zn alloy with low W–W contiguity. Rare Met, 2016, 35(3): 242 DOI: 10.1007/s12598-015-0570-x
|
[2] |
Han T L, Hou C, Zhao Z, et al. W–Cu composites with excellent comprehensive properties. Composites Part B, 2022, 233: 109664 DOI: 10.1016/j.compositesb.2022.109664
|
[3] |
Liu B B, Xie J X, Qu X H. Fabrication of W–Cu functionally graded materials with high density by particle size adjustment and solidstate hot press. Compos Sci Technol, 2008, 68(6): 1539 DOI: 10.1016/j.compscitech.2007.10.023
|
[4] |
寸敏敏, 陈文革, 颜国君, 等. 多次烧结对钨铜合金组织与性能的影响. 粉末冶金技术, 2017, 35(4): 243
Cun M M, Chen W G, Yan G J, et al. Influence of multiple sintering on microstructure and properties of W–Cu alloy. Powder Metall Technol, 2017, 35(4): 243
|
[5] |
Zhang X H, Zhang Y, Tian B H, et al. Thermal deformation behavior of the Al2O3–Cu/(W, Cr) electrical contacts. Vacuum, 2019, 164: 361 DOI: 10.1016/j.vacuum.2019.03.054
|
[6] |
Johnson J L. Activated liquid phase sintering of W–Cu and Mo–Cu. Int J Refract Met Hard Mater, 2015, 53: 80 DOI: 10.1016/j.ijrmhm.2015.04.030
|
[7] |
Ibrahim H, Aziz A, Rahmat A. Enhanced liquid–phase sintering of W–Cu composites by liquid infiltration. Int J Refract Met Hard Mater, 2014, 43: 222 DOI: 10.1016/j.ijrmhm.2013.12.004
|
[8] |
Wei B Z, Yu X X, Chen R Z, et al. A novel approach to fabricate W–Cu functionally graded materials via sedimentation and infiltration method. Mater Sci Eng A, 2021, 816: 141271
|
[9] |
Wang X R, Wei S Z, Xu L J, et al. Effect of sintering temperature on fine–grained Cu–W composites with high copper. Mater Charact, 2019, 153: 121 DOI: 10.1016/j.matchar.2019.04.017
|
[10] |
Li X Q, Zhang M J, Zhang G S, et al. Research on the hot deformation behavior of Cu–20wt%W composite under different temperatures. Mater Sci Eng A, 2022, 830: 142326 DOI: 10.1016/j.msea.2021.142326
|
[11] |
Lu T X, Chen C G, Guo Z M, et al. Tungsten nanoparticle–strengthened copper composite prepared by a sol–gel method and in-situ reaction. Int J Miner Metall Mater, 2019, 26(11): 1477 DOI: 10.1007/s12613-019-1889-3
|
[12] |
Kim D G, Kim G S, Suk M J, et al. Effect of heating rate on microstructural homogeneity of sintered W–15wt%Cu nanocomposite fabricated from W–CuO powder mixture. Scr Mater, 2004, 51(7): 677 DOI: 10.1016/j.scriptamat.2004.06.014
|
[13] |
Zhang Q, Cheng Y, Chen B J, et al. Microstructure and properties of W–25wt%Cu composites reinforced with tungsten carbide produced by an in situ reaction. Vacuum, 2020, 177: 109423 DOI: 10.1016/j.vacuum.2020.109423
|
[14] |
Ardestani M, Rezaie H R, Arabi H, et al. The effect of sintering temperature on densification of nanoscale dispersed W–20–40%wt Cu composite powders. Int J Refract Met Hard Mater, 2009, 27(5): 862 DOI: 10.1016/j.ijrmhm.2009.04.004
|
[15] |
da Costa F A, da Silva A G P, Umbelino Gomes U. The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technol, 2003, 134(1-2): 123 DOI: 10.1016/S0032-5910(03)00123-2
|
[16] |
Hong S H, Kim B K. Fabrication of W–20wt% Cu composite nanopowder and sintered alloy with high thermal conductivity. Mater Lett, 2003, 57(18): 2761 DOI: 10.1016/S0167-577X(03)00071-5
|
[17] |
Wan L, Cheng J G, Fan Y M, et al. Preparation and properties of superfine W–20Cu powders by a novel chemical method. Mater Des, 2013, 51: 136 DOI: 10.1016/j.matdes.2013.04.028
|
[18] |
Li C G, Zhou Y H, Xie Y H, et al. Effects of milling time and sintering temperature on structural evolution, densification behavior and properties of a W–20wt.%Cu alloy. J Alloys Compd, 2018, 731: 537 DOI: 10.1016/j.jallcom.2017.10.081
|
[19] |
Cheng J G, Song P, Gong Y F, et al. Fabrication and characterization of W–15Cu composite powders by a novel mechano-chemical process. Mater Sci Eng A, 2008, 488(1-2): 453 DOI: 10.1016/j.msea.2007.11.022
|
[20] |
Guo Y J, Guo H T, Gao B X, et al. Rapid consolidation of ultrafine grained W–30 wt.% Cu composites by field assisted sintering from the sol–gel prepared nanopowders. J Alloys Compd, 2017, 724: 155
|
[21] |
Cheng J G, Lei C P, Xiong E T, et al. Preparation and characterization of W–Cu nanopowders by a homogeneous precipitation process. J Alloys Compd, 2006, 421(1-2): 146 DOI: 10.1016/j.jallcom.2005.08.087
|
[22] |
Fan J L, Liu T, Zhu S, et al. Synthesis of ultrafine/nanocrystalline W–(30–50)Cu composite powders and microstructure characteristics of the sintered alloys. Int J Refract Met Hard Mater, 2012, 30(1): 33 DOI: 10.1016/j.ijrmhm.2011.06.011
|
[23] |
Gao J X, Li Y G, Tian Y, et al. Ultrafine W–Cu composite powder research progress. Adv Mater Res, 2012, 535-537: 86 DOI: 10.4028/www.scientific.net/AMR.535-537.86
|
[24] |
Chen P A, Luo G Q, Shen Q, et al. Thermal and electrical properties of W–Cu composite produced by activated sintering. Mater Des, 2013, 46: 101 DOI: 10.1016/j.matdes.2012.09.034
|
[25] |
Kim Y D, Oh N L, Oh S T, et al. Thermal conductivity of W–Cu composites at various temperatures. Mater Lett, 2001, 51(5): 420 DOI: 10.1016/S0167-577X(01)00330-5
|
[26] |
Li P, Chen C G, Qin Q, et al. Sintering microstructure and properties of copper powder prepared by electrolyzation and atomization. J Central South Univ, 2021, 28(7): 1966 DOI: 10.1007/s11771-021-4745-3
|