AdvancedSearch
ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090009
Citation: ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090009

Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering

More Information
  • Corresponding author:

    CHEN Yuhong, E-mail: lyhcheng@163.com

  • Received Date: January 11, 2022
  • Available Online: January 20, 2022
  • SiC-diamond polycrystalline materials doping by diamond with different mass fraction were prepared by pressureless sintering with AlN−Y2O3−Sc2O3 as liquid phase. The microstructure and thermal properties were analyzed by scanning electron microscopy and laser flash method, respectively. The effects of mass fraction (1.0%, 2.5%, 5.0%) and particle size (0.25 μm, 1.00 μm) of diamond on the densification and mechanical properties of the SiC-diamond polycrystalline materials were studied. The results show that, the relative density of the sintered samples is over 94% when the diamond mass fraction is below to 5.0%, while the relative density of the sample with 5.0% diamond is lower than that of other samples. The relative density of SiC polycrystalline materials decreases with the increase of diamond content, and the excessive diamond in raw materials may reduce the densification of samples. Under the experimental conditions, the grain size does not grow abnormally. The hardness, fracture toughness, and bending strength of the samples are in ranges of 16~18 GPa, 3.8~4.4 MPa·m1/2, and 239~540 MPa, respectively. The thermal conductivity and thermal diffusion coefficient of samples decrease with the increase of temperature, and the porosity is the main factor affecting the thermal conductivity of the sintered samples.

  • [1]
    Balog M, Šajgalı́k P, Hnatko M, et al. Nano- versus macro-hardness of liquid phase sintered SiC. J Eur Ceram Soc, 2005, 25(4): 529 DOI: 10.1016/j.jeurceramsoc.2004.01.026
    [2]
    Ciudad E, Borrero-López O, Rodríguez-Rojas F, et al. Effect of intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered alpha-SiC. J Eur Ceram Soc, 2012, 32(2): 511 DOI: 10.1016/j.jeurceramsoc.2011.09.011
    [3]
    Rohit M, Kim Y H, Kim Y W. Effect of additive content on the mechanical and thermal properties of pressureless liquid-phase sintered SiC. J Asian Ceram Soc, 2020, 8(2): 448 DOI: 10.1080/21870764.2020.1749376
    [4]
    张景贤, 江东亮, 姚秀敏, 等. SiC-AlN复相陶瓷材料的无压烧结和导热性能. 真空电子技术, 2014(5): 1 DOI: 10.3969/j.issn.1002-8935.2014.05.001

    Zhang J X, Jiang D L, Yao X M, et al. Study of pressureless sintering and thermal conductivity for SiC-AlN composites. Vac Electron, 2014(5): 1 DOI: 10.3969/j.issn.1002-8935.2014.05.001
    [5]
    鹿桂花, 朱丹丹, 周恒为. 助烧剂对无压液相烧结碳化硅陶瓷性能的影响. 伊犁师范学院学报(自然科学版), 2019, 13(2): 25

    Lu G H, Zhu D D, Zhou H W. Effect of sintering aid on properties of silicon carbide ceramics by pressureless liquid phase sintering. J Yili Normal Univ Nat Sci, 2019, 13(2): 25
    [6]
    A Ward, Broido D A, Stewart D A, et al. Ab initio theory of the lattice thermal conductivity in diamond. Phys Rev B, 2009, 80(12): 125203: 1
    [7]
    王旭磊. 液相硅熔渗制备金刚石/碳化硅复合材料及性能研究[学位论文]. 北京: 北京科技大学, 2021

    Wang X L. Preparation and Properties of Diamond/Silicon Carbide Composites by Silicon Liquid Infiltration [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
    [8]
    K Shimoda, Hinoki T, Kohyama A. Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites. Compos Sci Technol, 2010, 70(2): 387 DOI: 10.1016/j.compscitech.2009.11.013
    [9]
    Li Q S, Zhang Y J, Gong H Y, et al. Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics. Ceram Int, 2015, 41(10): 13547 DOI: 10.1016/j.ceramint.2015.07.149
    [10]
    Seo Y K, Kim Y W, Nishimura T, et al. High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia. J Am Ceram Soc, 2017, 100(4): 1290 DOI: 10.1111/jace.14748
    [11]
    Cho T Y, Kim Y W, Kim K J. Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride. J Eur Ceram Soc, 2016, 36(11): 2659 DOI: 10.1016/j.jeurceramsoc.2016.04.014
    [12]
    Nakano H, Watari K, Kinemuchi Y, et al. Microstructural characterization of high-thermal-conductivity SiC ceramics. J Eur Ceram Soc, 2004, 24(14): 3685 DOI: 10.1016/j.jeurceramsoc.2003.12.019
    [13]
    孙祥运, 陈浩, 王顺琴, 等. 碳化硅-金刚石陶瓷的制备及其导热性能. 耐火材料, 2021, 55(2): 131

    Sun X Y, Chen H, Wang S Q, et al. Preparation and thermal conductivity of SiC-diamond ceramics. Refractories, 2021, 55(2): 131
    [14]
    张锐, 王海龙, 许红亮. 陶瓷工艺学. 北京: 化学工业出版社, 2013

    Zhang R, Wang H L, Xu H L. Ceramics Processing. Beijing: Chemical Industry Press, 2013
    [15]
    赵龙, 宋平新, 张迎九, 等. 高导热金刚石/铜电子封装材料: 制备技术、性能影响因素、界面结合改善方法. 材料导报, 2018, 32(11): 1842

    Zhang L, Yang P X, Zhang Y J, et al. Diamond-copper composites with high thermal conductivity used for electronic packaging: fabrication techniques, performance influencing factors and interfacial strengthening methods. Mater Rev, 2018, 32(11): 1842
    [16]
    李其松. 高热导率SiC陶瓷材料制备及应用研究[学位论文]. 济南: 山东大学, 2016

    Li Q S. Preparation and Application Research of High Thermal Conductivity SiC Ceramics [Dissertation]. Jinan: Shandong University, 2016
    [17]
    Kingery W D. 陶瓷导论. 清华大学译. 北京: 中国建筑工业出版社, 1982

    Kingery W D. Introduction to Ceramics. Transl by Tsinghua University. Beijing: China Architecture Publishing, 1982
  • Related Articles

    [1]SHU chen, XU Qiang, LIU Yi-bo, YANG Zhiwei, KOU Shengzhong, CAO Rui. Investigation on microstructure and performance of sintered matrix and diamond saw blades welded by laser under different transition layer component[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110005
    [2]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]LIU Yiran, LI Lei, LI Xiaodong. Effect of shot peening on surface mechanical properties of selective laser melting TC4 titanium alloy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010008
    [5]LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
    [6]CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009
    [7]LIANG Jia-miao, WANG Li-min, HE Wei, TANG Chao, WU Xi-mao, WANG Jun. Effect of milling time on microstructures and hardness of nanocrystalline Al-7Si-0.3Mg alloy powders[J]. Powder Metallurgy Technology, 2019, 37(5): 373-381,391. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.009
    [8]WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
    [9]WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
    [10]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008

Catalog

    Article Metrics

    Article views (394) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return