AdvancedSearch
OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
Citation: OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010

Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles

More Information
  • Corresponding author:

    ZHONG Zhihong, E-mail: zhong@hfut.edu.cn

  • Received Date: October 17, 2022
  • Available Online: December 20, 2022
  • FeCrCoMnNi matrix composites reinforced by TiC particles were prepared by mechanical ball milling and spark plasma sintering. Effects of TiC mass fraction and sintering temperature on the microstructure and mechanical properties of the composites were evaluated. The results show that, the composites are composed of the face-centered cubic matrix, TiC, and Cr23C6 carbide reinforcements, and the content of Cr23C6 formed by the reaction between Cr and C increases with the increase of TiC content. The reinforcements distribute relatively uniform in the composites fabricated at 1000 ℃, when the TiC mass fraction is 1%~9%. The sintering temperature has a significant effect on the microstructure and mechanical properties. The samples sintered at 1000 ℃ or 1050 ℃ have the relatively uniform microstructure and exhibit the better mechanical properties. The hardness and room temperature yield strength of the samples with 7%TiC are about 2.5 times and 3.0 times respectively of that without TiC, due to the strengthening effect of both TiC and Cr23C6 carbide reinforcements.

  • [1]
    Morris D G, Muñoz-Morris M A. Nanoprecipitation of oxide particles and related high strength in oxide-dispersion-strengthened iron-aluminium-chromium intermetallics. Acta Mater, 2013, 61(12): 4636 DOI: 10.1016/j.actamat.2013.04.034
    [2]
    何勤求, 李普明, 袁勇, 等. 陶瓷颗粒增强粉末冶金Fe‒2Cu‒0.6C复合材料的微观结构和力学性能. 粉末冶金技术, 2019, 37(1): 11

    He Q Q, Li P M, Yuan Y, et al. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe‒2Cu‒0.6C composites. Powder Metall Technol, 2019, 37(1): 11
    [3]
    刘增林, 韩伟, 王彦康, 等. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能. 粉末冶金技术, 2022, 40(6): 527

    Liu Z L, Han W, Wang Y K, et al. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles. Powder Metall Technol, 2022, 40(6): 527
    [4]
    宋鑫芳, 张勇. 高熵合金研究进展. 粉末冶金技术, 2022, 40(5): 451

    Song X F, Zhang Y. Progress of high entropy alloys. Powder Metall Technol, 2022, 40(5): 451
    [5]
    Wang J Y, Yang H L, Liu Z L, et al. Synergistic effects of WC nanoparticles and MC nanoprecipitates on the mechanical and tribological properties of Fe40Mn40Cr10Co10 medium-entropy alloy. J Mater Res Technol, 2019, 8(4): 3550 DOI: 10.1016/j.jmrt.2019.06.031
    [6]
    Rogal Ł, Kalita D, Litynska-Dobrzynska L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3. Intermetallics, 2017, 86: 104 DOI: 10.1016/j.intermet.2017.03.019
    [7]
    Chen H, Chen W, Liu X Q, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater Sci Eng A, 2018, 719: 192 DOI: 10.1016/j.msea.2018.02.040
    [8]
    Wilson J M, Shin Y C. Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf Coat Technol, 2012, 207: 517
    [9]
    Ji W, Wang W M, Wang H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 2015, 56: 24 DOI: 10.1016/j.intermet.2014.08.008
    [10]
    Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater, 2013, 61(15): 5743 DOI: 10.1016/j.actamat.2013.06.018
    [11]
    杜星霖, 鞠泉, 马惠萍, 等. GH3230合金M23C6型碳化物的析出行为. 金属热处理, 2021, 46(2): 50

    Du X L, Ju Q, Ma H P, et al. Precipitation behavior of M23C6 type carbides in GH3230 alloy. Heat Treat Met, 2021, 46(2): 50
    [12]
    李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展. 材料导报, 2020, 34(S2): 1412

    Li Z, Wu R. Research development of theoretical basis and application of strengthening precipitates in steel. Mater Rep, 2020, 34(S2): 1412
    [13]
    付文超, 肖志瑜, 李小峰, 等. 放电等离子烧结制备TiCp/M2高速钢复合材料. 粉末冶金材料科学与工程, 2015, 20(2): 194 DOI: 10.3969/j.issn.1673-0224.2015.02.007

    Fu W C, Xiao Z Y, Li X F, et al. Preparation of TiCp/M2 composite by spark plasma sintering. Mater Sci Eng Powder Metall, 2015, 20(2): 194 DOI: 10.3969/j.issn.1673-0224.2015.02.007
    [14]
    夏洪勇, 董龙龙, 霍望图, 等. 等离子烧结温度对CoCrCuFeNi高熵合金组织及性能的影响. 稀有金属材料与工程, 2021, 50(9): 3327 DOI: 10.12442/j.issn.1002-185X.20200780

    Xia H Y, Dong L L, Huo W T, et al. Effect of temperature on microstructure and properties of CoCrCuFeNi high entropy alloy by spark plasma sintering. Rare Metal Materi Eng, 2021, 50(9): 3327 DOI: 10.12442/j.issn.1002-185X.20200780
    [15]
    马会, 罗骥. TiC-NiCrCoMo钢结硬质合金的制备与高温氧化性能. 粉末冶金技术, 2021, 39(2): 147

    Ma H, Luo J. Preparation and high temperature oxidation properties of TiC-NiCrCoMo steel bonded cemented carbides. Powder Metall Technol, 2021, 39(2): 147
    [16]
    曾昭锋, 周波涛, 熊宣雯, 等. SiCp/Cu复合材料的研究进展. 粉末冶金技术, 2021, 39(2): 184

    Zeng Z F, Zhou B T, Xiong X W, et al. Research progress of SiCp/Cu composites. Powder Metall Technol, 2021, 39(2): 184
    [17]
    Jiang L, Wen H M, Yang H R, et al. Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Mater, 2015, 89: 327 DOI: 10.1016/j.actamat.2015.01.062
    [18]
    Haftlang F, Kim H S. A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing. Mater Des, 2021, 211: 110161 DOI: 10.1016/j.matdes.2021.110161
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views (373) PDF downloads (60) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return