AdvancedSearch
LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
Citation: LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003

Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders

More Information
  • Corresponding author:

    ZHANG Lin, E-mail: zhanglincsu@163.com (ZHANG L)

    QU Xuan-hui, quxh@ustb.edu.cn (QU X H)

  • Received Date: February 28, 2021
  • Available Online: April 13, 2021
  • Commercial tungsten powders were modified by jet milling, the effects of jet milling treatment and particle size distribution on the microstructure and mechanical properties of the sintered tungsten body were studied. The results show that, the tungsten powders treated by jet milling in the narrower particle size distribution can achieve the better packing homogeneity, eliminate the irregular coarse pores formed during sintering, improve the sintering uniformity, and increase the relative density of the sintered body; the relative density of the sintered body increases from 90.7% to 92.8%, and the bending strength from 238.5 MPa to 292.4 MPa. The tungsten powders in the narrow particle size distribution with the good dispersibility can eliminate the irregular coarse pores in sintered body, which is the key factor to improve the mechanical properties of the sintered body.
  • [1]
    Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic and Plenum Publishers, 1999
    [2]
    赵慕岳, 范景莲, 刘涛, 等. 中国钨加工业的现状与发展趋势. 中国钨业, 2010, 25(2): 26 DOI: 10.3969/j.issn.1009-0622.2010.02.007

    Zhao M Y, Fan J L, Liu T, et al. Current situation and development trend of China tungsten processing industry. China Tungsten Ind, 2010, 25(2): 26 DOI: 10.3969/j.issn.1009-0622.2010.02.007
    [3]
    刘文胜, 龙路平, 马运柱. 高纯钨研究现状及制备工艺方法综述. 粉末冶金技术, 2012, 30(3): 223 DOI: 10.3969/j.issn.1001-3784.2012.03.012

    Liu W S, Long L P, Ma Y Z. Research and preparation methods for high-purity tungsten. Powder Metall Technol, 2012, 30(3): 223 DOI: 10.3969/j.issn.1001-3784.2012.03.012
    [4]
    廖彬彬, 魏修宇. 钨钼材料在蓝宝石单晶炉中的应用. 硬质合金, 2018, 35(2): 134

    Liao B B, Wei X Y. The application of tungsten and molybdenum materials in sapphire single crystal furnace. Cement Carb, 2018, 35(2): 134
    [5]
    刘文迪. 集成电路用钨溅射靶材制备技术的研究进展. 中国钨业, 2020, 35(1): 36 DOI: 10.3969/j.issn.1009-0622.2020.01.007

    Liu W D. Research progress of preparation technology of tungsten sputtering targets for integrated circuits. China Tungsten Ind, 2020, 35(1): 36 DOI: 10.3969/j.issn.1009-0622.2020.01.007
    [6]
    陈锦, 熊宁, 葛启录, 等. 钨坩埚密度均匀性研究. 中国钨业, 2017, 32(4): 35 DOI: 10.3969/j.issn.1009-0622.2017.04.007

    Chen J, Xiong N, Ge Q L, et al. Density uniformity of the tungsten crucible. China Tungsten Ind, 2017, 32(4): 35 DOI: 10.3969/j.issn.1009-0622.2017.04.007
    [7]
    Li X Y, Zhang L, Dong Y H, et al. Pressureless two-step sintering of ultrafine-grained tungsten. Acta Mater, 2020, 186: 116 DOI: 10.1016/j.actamat.2020.01.001
    [8]
    陈锦, 熊宁, 葛启录, 等. 钨坩埚的制备技术. 中国钨业, 2016, 31(1): 63 DOI: 10.3969/j.issn.1009-0622.2016.01.012

    Chen J, Xiong N, Ge Q L, et al. Manufacturing technology of tungsten crucibles. China Tungsten Ind, 2016, 31(1): 63 DOI: 10.3969/j.issn.1009-0622.2016.01.012
    [9]
    Lin F J T, De Jonghe L C, Rahaman M N. Microstructure refinement of sintered alumina by a two-step sintering technique. J Am Ceram Soc, 1997, 80(9): 2269
    [10]
    Dynys F W, Halloran J W. Influence of aggregates on sintering. J Am Ceram Soc, 1984, 67(9): 596 DOI: 10.1111/j.1151-2916.1984.tb19601.x
    [11]
    Evans A G. Considerations of inhomogeneity effects in sintering. J Am Ceram Soc, 1982, 65(10): 497 DOI: 10.1111/j.1151-2916.1982.tb10340.x
    [12]
    Lange F F. Sinterability of agglomerated powders. J Am Ceram Soc, 1984, 67(2): 83 DOI: 10.1111/j.1151-2916.1984.tb09620.x
    [13]
    黄化, 秦明礼, 曲选辉, 等. 气流磨处理钨粉的研究. 稀有金属材料与工程, 2012, 41(12): 2210 DOI: 10.3969/j.issn.1002-185X.2012.12.030

    Huang H, Qin M L, Qu X H, et al. Study on jet milling processing of tungsten powder. Rare Met Mater Eng, 2012, 41(12): 2210 DOI: 10.3969/j.issn.1002-185X.2012.12.030
    [14]
    Berthiaux H, Chiron C, Dodds J. Modelling fine grinding in a fluidized bed opposed jet mill: Part Ⅱ: Continuous grinding. Powder Technol, 1999, 106(1-2): 88 DOI: 10.1016/S0032-5910(99)00050-9
    [15]
    Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram. Acta Metall, 1953, 1(1): 22 DOI: 10.1016/0001-6160(53)90006-6
    [16]
    Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys B, 2010, 405(20): 4256 DOI: 10.1016/j.physb.2010.07.020
    [17]
    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
    [18]
    Kingery W D, Francois B. The sintering of crystalline oxides, I. Interactions between grain boundaries and pores, [in] Sintering and Related Phenomena. New York: Gordon and Breach Science Publishers, 1967
  • Related Articles

    [1]WANG Chunjin, CHEN Wenge, MENG Xiangrui, ZHANG Hui, ZHOU Xinwen. Influence of pore structure on mechanical properties of 3D printing porous tungsten[J]. Powder Metallurgy Technology, 2024, 42(6): 589-599. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(2)

    1. 初建鹏,冯建程,鞠翔宇,姜涛. 动载作用下高强度钢的层裂特性研究. 兵器材料科学与工程. 2024(02): 129-135 .
    2. 班伟,陈嘉琪,刘璐璐,葛涛,张帅. 紧耦合气雾化喷嘴流场特性研究. 粉末冶金技术. 2024(03): 312-319 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (375) PDF downloads (53) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return