Citation: | YOU Li, YANG Fang, ZHANG Ce, GUO Zhi-meng, CHEN Cun-guang, WANG Hai-ying. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction[J]. Powder Metallurgy Technology, 2019, 37(3): 196-201. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.006 |
[1] |
Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(s3-4): 49. http://www.sciencedirect.com/science/article/pii/S0927796X00000243
|
[2] |
Morsi K, Patel V V. Processing and properties of titanium-titanium boride(TiBw)matrix composites-a review. J Mater Sci, 2007, 42(6): 2037. DOI: 10.1007/s10853-006-0776-2
|
[3] |
Geng L, Ni D R, Zhang J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites. J Alloys Compd, 2008, 463(1-2): 488. DOI: 10.1016/j.jallcom.2007.09.054
|
[4] |
汤慧萍, 黄伯云, 刘咏, 等.粉末冶金颗粒增强钛基复合材料研究进展.粉末冶金技术, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008
Tang H P, Huang B Y, Liu Y, et al. Progress in powder metallurgy particle reinforced Ti matrix composite. Powder Metall Technol, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008
|
[5] |
Fleck N A, Smith R A. Effect of density on tensile strength, fracture toughness, and fatigue crack propagation behaviour of sintered steel. Powder Metall, 1981, 24(3): 121. DOI: 10.1179/pom.1981.24.3.121
|
[6] |
Zadra M, Girardini L. High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A, 2014, 608(1): 155.
|
[7] |
Khurram S, Kingshott P, Wen C. Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit Rev Solid State Mater Sci, 2015, 40(1): 38. DOI: 10.1080/10408436.2014.929521
|
[8] |
Sherif El-Eskandarany M. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J Alloys Compd, 2000, 305(1-2): 225. DOI: 10.1016/S0925-8388(00)00692-7
|
[9] |
Zheng H, Jaganandham K. Thermal conductivity and interface thermal conductance in composites of titanium with graphene platelets. J Heat Transfer, 2014, 136(6): 061301. DOI: 10.1115/1.4026488
|
[10] |
Kondoh K, Threrujirapapong T, Imai H, et al. CNTs/TiCreinforced titanium matrix nanocomposites via powder metallurgy and its microstructural and mechanical properties. J Nanomater, 2008, 2008: 127538. http://dl.acm.org/citation.cfm?id=1731639
|
[11] |
Xu D, Lu W J, Yang Z F, et al. In situ technique for synthesizing multiple ceramic particulates reinforced titanium matrix composites(TiB+TiC+Y2O3)/Ti. JAlloys Compd, 2005, 400(1): 216. http://www.sciencedirect.com/science/article/pii/S0925838805003579
|
[12] |
Xie L C, Jiang C H, Lu W J, et al. Investigation on the residual stress and microstructure of(TiB+TiC)/Ti-6Al-4V composite after shot peening. Mater Sci Eng A, 2011, 528(9): 3423. DOI: 10.1016/j.msea.2011.01.022
|
[13] |
杨益, 杨盛良.碳纳米管增强金属基复合材料的研究现状及展望.材料导报, 2007, 21(增刊1): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2007S1055.htm
Yang Y, Yang S L. Research status and development prospect of metal matrix composite reinforced by carbon nano-tubes. Mater Rev, 2007, 21(Suppl 1): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2007S1055.htm
|
[14] |
周鹏, 覃继宁, 吕维洁, 等.粉末冶金制备原位自生钛基复合材料的显微组织和力学性能研究.粉末冶金工业, 2009, 19(3): 11 DOI: 10.3969/j.issn.1006-6543.2009.03.003
Zhou P, Qin J N, LüW J, et al. Microstructure and mechanical properties of in-situ synthesized titanium matrix composites prepared by powder metallurgy. Powder Metall Ind, 2009, 19(3): 11 DOI: 10.3969/j.issn.1006-6543.2009.03.003
|
[15] |
覃群, 王天国, 范宏训.粉末冶金原位合成法制备钛基复合材料的研究进展.粉末冶金工业, 2010, 20(5): 42
Qin Q, Wang T G, Fan H X. Progress in Ti matrix composites fabricated by powder metallurgy in situ method, Powder Metall Ind, 2010, 20(5): 42
|
[16] |
Li S, Sun B, Imai H, et al. Powder metallurgy Ti-TiCmetal matrix composites prepared by in situ reactive processing of Ti-VGCFs system. Carbon, 2013, 61: 216. DOI: 10.1016/j.carbon.2013.04.088
|
1. |
杨文斌,李仕宇,肖乾,丁昊昊,慕鑫鹏,杨春辉,陈道云. 添加不同固体润滑剂铁基合金激光熔覆涂层的干滑动摩擦磨损性能. 机械工程材料. 2024(03): 57-67 .
![]() | |
2. |
胡宁宁,张修恒,陈鹏,王崧全,陈天驰. 银吡唑甲基吡啶配合物复合润滑油添加剂的高温摩擦学性能研究与曲线拟合. 摩擦学学报. 2023(12): 1434-1444 .
![]() | |
3. |
孙德勤,张黎伟,蒋雪梅,刁朔. 超高强韧冷切锯片材料的进展与应用. 热加工工艺. 2022(17): 1-5+11 .
![]() | |
4. |
叶平元,钱东升,王华君,蒋骋,姚振华. H13钢基自润滑模具材料组织与性能. 塑性工程学报. 2022(10): 230-236 .
![]() | |
5. |
施琴,左文艳,赵光霞. 含Cr和NbSe_2铜基电接触复合材料的制备及性能研究. 粉末冶金技术. 2020(06): 455-464 .
![]() |