AdvancedSearch
YOU Li, YANG Fang, ZHANG Ce, GUO Zhi-meng, CHEN Cun-guang, WANG Hai-ying. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction[J]. Powder Metallurgy Technology, 2019, 37(3): 196-201. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.006
Citation: YOU Li, YANG Fang, ZHANG Ce, GUO Zhi-meng, CHEN Cun-guang, WANG Hai-ying. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction[J]. Powder Metallurgy Technology, 2019, 37(3): 196-201. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.006

In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction

More Information
  • Corresponding author:

    GUO Zhi-meng, E-mail:zmguo@ustb.edu.cn

  • Received Date: October 08, 2018
  • Using hydrogenation-dehydrogenation titanium powders as the raw materials, the in-situ synthesized TiC particles were prepared by gassolid reaction at a certain temperature under the atmosphere of CH4 after cold isostatic pressing, then the TiC particle-reinforced titanium matrix composites were manufactured by vacuum sintering with the oxygen content (volume fraction) less than 0.2%.In the results, the volume fraction of TiC particles can be controlled by adjusting the temperature and time of gassolid reaction, and the TiC particle-reinforced titanium matrix composites with the higher volume fraction of TiC particles (> 30%) can be obtained.TiC is first formed on the surface of titanium powders, and the growth of TiC particles is obviously hindered by Ti powders, resulting in the grain refining of TiC particles; however, the excessive TiC particles also hinder the self-diffusion process of titanium in the sintering process and reduce the relative density.The titanium powder compacts handled by gassolid reaction at 700 ℃ under the atmosphere of CH4 for 30 min are vacuum sintered at 1300 ℃, and the sintered specimens show the better comprehensive mechanical properties, the tensile strength is 606 MPa, the elongation is 14.4%, the hardness is HV 442, and the relative density is 98.6%.However, a relatively short period of gassolid reaction cannot guarantee the uniform distribution of TiC particles, resulting in the inhomogeneity in the internal and external structures of sintered specimens.
  • [1]
    Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(s3-4): 49. http://www.sciencedirect.com/science/article/pii/S0927796X00000243
    [2]
    Morsi K, Patel V V. Processing and properties of titanium-titanium boride(TiBw)matrix composites-a review. J Mater Sci, 2007, 42(6): 2037. DOI: 10.1007/s10853-006-0776-2
    [3]
    Geng L, Ni D R, Zhang J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites. J Alloys Compd, 2008, 463(1-2): 488. DOI: 10.1016/j.jallcom.2007.09.054
    [4]
    汤慧萍, 黄伯云, 刘咏, 等.粉末冶金颗粒增强钛基复合材料研究进展.粉末冶金技术, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008

    Tang H P, Huang B Y, Liu Y, et al. Progress in powder metallurgy particle reinforced Ti matrix composite. Powder Metall Technol, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008
    [5]
    Fleck N A, Smith R A. Effect of density on tensile strength, fracture toughness, and fatigue crack propagation behaviour of sintered steel. Powder Metall, 1981, 24(3): 121. DOI: 10.1179/pom.1981.24.3.121
    [6]
    Zadra M, Girardini L. High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A, 2014, 608(1): 155.
    [7]
    Khurram S, Kingshott P, Wen C. Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit Rev Solid State Mater Sci, 2015, 40(1): 38. DOI: 10.1080/10408436.2014.929521
    [8]
    Sherif El-Eskandarany M. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J Alloys Compd, 2000, 305(1-2): 225. DOI: 10.1016/S0925-8388(00)00692-7
    [9]
    Zheng H, Jaganandham K. Thermal conductivity and interface thermal conductance in composites of titanium with graphene platelets. J Heat Transfer, 2014, 136(6): 061301. DOI: 10.1115/1.4026488
    [10]
    Kondoh K, Threrujirapapong T, Imai H, et al. CNTs/TiCreinforced titanium matrix nanocomposites via powder metallurgy and its microstructural and mechanical properties. J Nanomater, 2008, 2008: 127538. http://dl.acm.org/citation.cfm?id=1731639
    [11]
    Xu D, Lu W J, Yang Z F, et al. In situ technique for synthesizing multiple ceramic particulates reinforced titanium matrix composites(TiB+TiC+Y2O3)/Ti. JAlloys Compd, 2005, 400(1): 216. http://www.sciencedirect.com/science/article/pii/S0925838805003579
    [12]
    Xie L C, Jiang C H, Lu W J, et al. Investigation on the residual stress and microstructure of(TiB+TiC)/Ti-6Al-4V composite after shot peening. Mater Sci Eng A, 2011, 528(9): 3423. DOI: 10.1016/j.msea.2011.01.022
    [13]
    杨益, 杨盛良.碳纳米管增强金属基复合材料的研究现状及展望.材料导报, 2007, 21(增刊1): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2007S1055.htm

    Yang Y, Yang S L. Research status and development prospect of metal matrix composite reinforced by carbon nano-tubes. Mater Rev, 2007, 21(Suppl 1): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2007S1055.htm
    [14]
    周鹏, 覃继宁, 吕维洁, 等.粉末冶金制备原位自生钛基复合材料的显微组织和力学性能研究.粉末冶金工业, 2009, 19(3): 11 DOI: 10.3969/j.issn.1006-6543.2009.03.003

    Zhou P, Qin J N, LüW J, et al. Microstructure and mechanical properties of in-situ synthesized titanium matrix composites prepared by powder metallurgy. Powder Metall Ind, 2009, 19(3): 11 DOI: 10.3969/j.issn.1006-6543.2009.03.003
    [15]
    覃群, 王天国, 范宏训.粉末冶金原位合成法制备钛基复合材料的研究进展.粉末冶金工业, 2010, 20(5): 42

    Qin Q, Wang T G, Fan H X. Progress in Ti matrix composites fabricated by powder metallurgy in situ method, Powder Metall Ind, 2010, 20(5): 42
    [16]
    Li S, Sun B, Imai H, et al. Powder metallurgy Ti-TiCmetal matrix composites prepared by in situ reactive processing of Ti-VGCFs system. Carbon, 2013, 61: 216. DOI: 10.1016/j.carbon.2013.04.088
  • Related Articles

    [1]ZHANG Wei, SHANG Xianhe, HU Minglei, SUI Fei, HE Xing, ZHOU Liangdong, NI Xiaoqing, ZHANG Liang, KONG Decheng, DONG Chaofang. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings[J]. Powder Metallurgy Technology, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
    [2]The influence of La2O3 addition amount on the microstructure and hardness of induction heating iron-based composite coatings[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2025010008
    [3]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [4]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WANG Cheng-yang, CHANG Yang, ZHANG Lin-hai, JI Peng-fei, DONG Di. Effect of ZrO2 content on microstructure and properties of molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(5): 429-433. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030008
    [7]ZHAO Hai-tao, LIU Chao. Effect of aging time on microstructure and hardness of Cu-4.5Ti alloys prepared by surface mechanical grinding[J]. Powder Metallurgy Technology, 2020, 38(2): 92-97. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.002
    [8]ZHU Xue-chao, WEI Qing-song, SUN Chun-hua. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment[J]. Powder Metallurgy Technology, 2019, 37(2): 83-90. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.001
    [9]Cao Ruijun, Lin Chenguang. Research progress of hardness model for WC-Co cemented carbide[J]. Powder Metallurgy Technology, 2013, 31(5): 374-378. DOI: 10.3969/j.issn.1001-3784.2013.05.011
    [10]Xiao Yong, Liu Shaojun, Wu Jian, Qu Xuanhui. Effect of trace alloying elements addition on microstructure and hardness of alumina dispersion strengthened copper alloys[J]. Powder Metallurgy Technology, 2012, 30(4): 260-265. DOI: 10.3969/j.issn.1001-3784.2012.04.004
  • Cited by

    Periodical cited type(5)

    1. 杨文斌,李仕宇,肖乾,丁昊昊,慕鑫鹏,杨春辉,陈道云. 添加不同固体润滑剂铁基合金激光熔覆涂层的干滑动摩擦磨损性能. 机械工程材料. 2024(03): 57-67 .
    2. 胡宁宁,张修恒,陈鹏,王崧全,陈天驰. 银吡唑甲基吡啶配合物复合润滑油添加剂的高温摩擦学性能研究与曲线拟合. 摩擦学学报. 2023(12): 1434-1444 .
    3. 孙德勤,张黎伟,蒋雪梅,刁朔. 超高强韧冷切锯片材料的进展与应用. 热加工工艺. 2022(17): 1-5+11 .
    4. 叶平元,钱东升,王华君,蒋骋,姚振华. H13钢基自润滑模具材料组织与性能. 塑性工程学报. 2022(10): 230-236 .
    5. 施琴,左文艳,赵光霞. 含Cr和NbSe_2铜基电接触复合材料的制备及性能研究. 粉末冶金技术. 2020(06): 455-464 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (204) PDF downloads (27) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return