AdvancedSearch
XIA Min, WANG Peng, ZHANG Xiao-hu, WU Jia-lun, GE Chang-chun. Optimum structure design of free-fall nozzle in preparation process of superalloy powders by electrode induction gas atomization technology[J]. Powder Metallurgy Technology, 2019, 37(4): 288-297. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.009
Citation: XIA Min, WANG Peng, ZHANG Xiao-hu, WU Jia-lun, GE Chang-chun. Optimum structure design of free-fall nozzle in preparation process of superalloy powders by electrode induction gas atomization technology[J]. Powder Metallurgy Technology, 2019, 37(4): 288-297. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.009

Optimum structure design of free-fall nozzle in preparation process of superalloy powders by electrode induction gas atomization technology

More Information
  • Corresponding author:

    XIA Min, E-mail: xmdsg@ustb.edu.cn

  • Received Date: September 21, 2018
  • The structure design of free-fall nozzle directly determines the quality of gas-atomized powders in electrode induction melting gas atomization (EIGA) process, the unreasonable jet angle in free-fall nozzle structure often causes the regurgitation phenomenon, the flake powders, and the low yield of fine powders, which seriously affect the production efficiency and quality of powders. The numerical modeling of free-fall nozzle structure in the self-designed third generation of EIGA superalloy powder preparation device was established using Fluent commercial software for computational fluid dynamics (CFD). The effect of jet angle on the regurgitation phenomenon and the regurgitation mechanism of free-fall nozzle with gas flow recirculation were investigated in the initial atomization of melt. In the results, when the jet angle of free-fall nozzle is too large, there is an obvious regurgitation phenomenon; when the jet angle is too small, the superheat of the melt stream before atomization is insufficient, resulting in the poor sphericity of produced powders. Therefore, to ensure the superheat of melt flow and prevent the regurgitation phenomenon, it is necessary to control the recirculation zone position of gas flow to be lower than the melt inlet position of free-fall nozzle.
  • [1]
    国为民, 赵明汉, 董建新, 等. FGH95镍基粉末高温合金的研究和展望. 机械工程学报, 2013, 49(18): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318006.htm

    Guo W M, Zhao M H, Dong J X, et al. Research and development in FGH95 P/M nickel based superalloy. J Mech Eng, 2013, 49(18): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318006.htm
    [2]
    邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006, 26(3): 244 DOI: 10.3969/j.issn.1005-5053.2006.03.051

    Zou J W, Wang W X. Development and application of P/M superalloy. J Aeronaut Mater, 2006, 26(3): 244 DOI: 10.3969/j.issn.1005-5053.2006.03.051
    [3]
    张国星, 韩寿波, 孙志坤. 热诱导孔洞对粉末冶金高温合金性能的影响. 粉末冶金工业, 2015, 25(1): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501015.htm

    Zhang G X, Han S B, Sun Z K. Effects of thermal induced porosity on mechanical properties of PM superalloy. Powder Metall Ind, 2015, 25(1): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501015.htm
    [4]
    张丽娜, 张麦仓, 李晓, 等. 粉末高温合金中非金属夹杂物问题的研究进展. 兵器材料科学与工程, 2001, 24(3): 64 DOI: 10.3969/j.issn.1004-244X.2001.03.018

    Zhang L N, Zhang M C, Li X, et al. Progress in study of nonmetallic inclusion in powder metallurgy (P/M) superalloys. Ordn Mater Sci Eng, 2001, 24(3): 64 DOI: 10.3969/j.issn.1004-244X.2001.03.018
    [5]
    张义文, 杨士仲, 李力, 等. 我国粉末高温合金的研究现状. 材料导报, 2002, 16(5): 1 DOI: 10.3321/j.issn:1005-023X.2002.05.001

    Zhang Y W, Yang S Z, Li L, et al. Current status of research on PM superalloy in China. Mater Rev, 2002, 16(5): 1 DOI: 10.3321/j.issn:1005-023X.2002.05.001
    [6]
    何国爱, 丁晗晖, 刘琛仄, 等. 粉末特性对镍基粉末冶金高温合金组织及热变形行为的影响. 中国有色金属学报, 2016, 26(1): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601006.htm

    He G A, Ding H H, Liu C Z, et al. Effects of powder characteristics on microstructure and deformation activation energy of nickel based superalloy. Chin J Nonferrous Met, 2016, 26(1): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601006.htm
    [7]
    Ahsan M N, Pinkerton A J, Moat R J, et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders. Mater Sci Eng A, 2011, 528(25-26): 7648 DOI: 10.1016/j.msea.2011.06.074
    [8]
    陆亮亮, 刘雪峰, 张少明, 等. 高频感应熔化金属丝气雾化制备球形钛粉. 材料导报, 2018, 32(8): 1267 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201808012.htm

    Lu L L, Liu X F, Zhang S M, et al. A combinatorial technique incorporating high frequency inductive heating and gas atomization for preparing spherical titanium powders from titanium wires. Mater Rep, 2018, 32(8): 1267 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201808012.htm
    [9]
    袁华, 李周, 许文勇, 等. 氩气雾化制备高温合金粉末的研究. 粉末冶金工业, 2010, 20(4): 1 DOI: 10.3969/j.issn.1006-6543.2010.04.001

    Yuan H, Li Z, Xu W Y, et al. The study of argon atomized superalloy powders. Powder Metall Ind, 2010, 20(4): 1 DOI: 10.3969/j.issn.1006-6543.2010.04.001
    [10]
    刘杨, 李周, 张国庆, 等. 双层雾化器流场的模拟研究. 航空材料学报, 2015, 35(5): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201505012.htm

    Liu Y, Li Z, Zhang G Q, et al. Flow field of double layer atomizer. J Aeronaut Mater, 2015, 35(5): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201505012.htm
    [11]
    韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状. 中国材料进展, 2014, 32(12): 748 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201412006.htm

    Han Z Y, Ceng G, Liang S J, et al. Development in powder production technology of Ni-based superalloy. Mater China, 2014, 32(12): 748 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201412006.htm
    [12]
    Jia C L, Ge C C, Yan Q Z. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal. Chin Phys B, 2016, 25(2): 320 DOI: 10.1088/1674-1056/25/2/026103
    [13]
    Ting J, Peretti M W, Eisen W B. The effect of wake-closure phenomenon on gas atomization performance. Mater Sci Eng A, 2002, 326(1): 110 DOI: 10.1016/S0921-5093(01)01437-X
    [14]
    Motaman S, Mullis A M, Cochrane R F, et al. Numerical and experimental investigations of the effect of melt delivery nozzle design on the open- to closed-wake transition in closed-coupled gas atomization. Metall Mater Trans B, 2015, 46(4): 1990 DOI: 10.1007/s11663-015-0346-6
    [15]
    Ting J, Anderson I E. A computational fluid dynamics (CFD) investigation of the wake closure phenomenon. Mater Sci Eng A, 2004, 379(1): 264 http://www.sciencedirect.com/science/article/pii/S0921509304002254
    [16]
    Zeoli N, Gu S. Numerical modelling of droplet break-up for gas atomisation. Comput Mater Sci, 2006, 38(2): 282 DOI: 10.1016/j.commatsci.2006.02.012
    [17]
    Zeoli N, Gu S. Computational simulation of metal droplet break-up, cooling and solidification during gas atomisation. Comput Mater Sci, 2008, 43(2): 268 DOI: 10.1016/j.commatsci.2007.10.005
    [18]
    Motaman S, Mullis A M, Cochrane R F, et al. Numerical and experimental modelling of back stream flow during close-coupled gas atomization. Comput Fluids, 2013, 88: 1 DOI: 10.1016/j.compfluid.2013.08.006
    [19]
    Zhao W J, Cao F Y, Ning Z L, et al. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer. Comput Chem Eng, 2012, 40: 58 DOI: 10.1016/j.compchemeng.2012.02.014
    [20]
    Fritsching U, Uhlenwinkel V. Hybrid gas atomization for powder production. [in] Powder Metallurgy. Eds by Kondoh K. Rijeka: In Tech, 2012
    [21]
    陈欣. 紧耦合气雾化流场结构和雾化机理研究[学位论文]. 长沙: 中南大学, 2007

    Chen X. Study on Structure and Atomization Mechanism of Closely Coupling Gas Atomization[Dissertation]. Changsha: Central South University, 2007
    [22]
    Fritsching U. Spray Simulation: Modeling and Numerical Simulation of Sprayforming Metals. New York: American Society of Mechanical Engineers, 2006
    [23]
    Ashgriz N. Handbook of Atomization and Sprays. Boston: Springer, 2011
    [24]
    Firmansyah D A, Kaiser R, Zahaf R, et al. Numerical simulations of supersonic gas atomization of liquid metal droplets. Jpn J Appl Phys, 2014, 53: 5S3 http://adsabs.harvard.edu/abs/2014JaJAP..53eHA09A
    [25]
    Aydin O, Unal R. Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior. Comput Fluids, 2011, 42(1): 37 DOI: 10.1016/j.compfluid.2010.10.013
  • Related Articles

    [1]ZHANG Wei, SHANG Xianhe, HU Minglei, SUI Fei, HE Xing, ZHOU Liangdong, NI Xiaoqing, ZHANG Liang, KONG Decheng, DONG Chaofang. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings[J]. Powder Metallurgy Technology, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
    [2]The influence of La2O3 addition amount on the microstructure and hardness of induction heating iron-based composite coatings[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2025010008
    [3]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [4]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WANG Cheng-yang, CHANG Yang, ZHANG Lin-hai, JI Peng-fei, DONG Di. Effect of ZrO2 content on microstructure and properties of molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(5): 429-433. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030008
    [7]ZHAO Hai-tao, LIU Chao. Effect of aging time on microstructure and hardness of Cu-4.5Ti alloys prepared by surface mechanical grinding[J]. Powder Metallurgy Technology, 2020, 38(2): 92-97. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.002
    [8]ZHU Xue-chao, WEI Qing-song, SUN Chun-hua. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment[J]. Powder Metallurgy Technology, 2019, 37(2): 83-90. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.001
    [9]Cao Ruijun, Lin Chenguang. Research progress of hardness model for WC-Co cemented carbide[J]. Powder Metallurgy Technology, 2013, 31(5): 374-378. DOI: 10.3969/j.issn.1001-3784.2013.05.011
    [10]Xiao Yong, Liu Shaojun, Wu Jian, Qu Xuanhui. Effect of trace alloying elements addition on microstructure and hardness of alumina dispersion strengthened copper alloys[J]. Powder Metallurgy Technology, 2012, 30(4): 260-265. DOI: 10.3969/j.issn.1001-3784.2012.04.004
  • Cited by

    Periodical cited type(5)

    1. 杨文斌,李仕宇,肖乾,丁昊昊,慕鑫鹏,杨春辉,陈道云. 添加不同固体润滑剂铁基合金激光熔覆涂层的干滑动摩擦磨损性能. 机械工程材料. 2024(03): 57-67 .
    2. 胡宁宁,张修恒,陈鹏,王崧全,陈天驰. 银吡唑甲基吡啶配合物复合润滑油添加剂的高温摩擦学性能研究与曲线拟合. 摩擦学学报. 2023(12): 1434-1444 .
    3. 孙德勤,张黎伟,蒋雪梅,刁朔. 超高强韧冷切锯片材料的进展与应用. 热加工工艺. 2022(17): 1-5+11 .
    4. 叶平元,钱东升,王华君,蒋骋,姚振华. H13钢基自润滑模具材料组织与性能. 塑性工程学报. 2022(10): 230-236 .
    5. 施琴,左文艳,赵光霞. 含Cr和NbSe_2铜基电接触复合材料的制备及性能研究. 粉末冶金技术. 2020(06): 455-464 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (329) PDF downloads (82) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return