Citation: | LI Ying-fen, TONG Zi-wen, CHEN Lei, ZHU Yi-xiang. Preparation and performance of silver micro-nanoparticles for electrode silver paste[J]. Powder Metallurgy Technology, 2020, 38(4): 275-282. DOI: 10.19591/j.cnki.cn11-1974/tf.2019030009 |
[1] |
李碧渊, 甘卫平, 黎应芬, 等. 分步还原法制备电子浆料用球形银粉及其形貌与粒径. 粉末冶金材料科学与工程, 2016, 21(1): 109 DOI: 10.3969/j.issn.1673-0224.2016.01.015
Li B Y, Gan W P, Li Y F, et al. Morphology and particle size of micro spherical silver fabricated by multistep reduction. Mater Sci Eng Powder Metall, 2016, 21(1): 109 DOI: 10.3969/j.issn.1673-0224.2016.01.015
|
[2] |
张晓烨, 钟翔, 陈学刚, 等. 搅拌球磨磨制片状银粉工艺研究. 粉末冶金技术, 2019, 37(2): 134 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201902009.htm
Zhang X Y, Zhong X, Chen X G, et al. Research on the process of grinding flake silver powder by ball-stirring mill. Powder Metall Technol, 2019, 37(2): 134 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201902009.htm
|
[3] |
李宏勇, 付明, 王玥, 等. 银粉对硅太阳电池正银电极性能的影响. 太阳能学报, 2017, 38(1): 206 https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201701030.htm
Li H Y, Fu M, Wang Y, et al. Effects of silver powder on properties of front-side Ag contacts for silicon solar cells. Acta Energ Solar Sin, 2017, 38(1): 206 https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201701030.htm
|
[4] |
Tian Q H, Deng D, Li Y, et al. Preparation of ultrafine silver powders with controllable size and morphology. Trans Nonferrous Met Soc China, 2018, 28(3): 524 DOI: 10.1016/S1003-6326(18)64685-0
|
[5] |
张小敏, 赵国, 李起龙, 等. 超细银粉及导电复合材料制备与表征. 高校化学工程学报, 2018, 32(2): 421 DOI: 10.3969/j.issn.1003-9015.2018.02.022
Zhang X M, Zhao G, Li Q L, et al. Preparation and characterization of ultrafine silver powders and conductive composite materials. J Chem Eng Chin Univ, 2018, 32(2): 421 DOI: 10.3969/j.issn.1003-9015.2018.02.022
|
[6] |
哈敏, 董宁利, 钟翔. 分散剂对磨制片状银粉性能的影响. 粉末冶金技术, 2019, 37(1): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201901008.htm
Ha M, Dong N L, Zhong X. Influence of dispersants on the properties of flake silver powders by milling. Powder Metall Technol, 2019, 37(1): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201901008.htm
|
[7] |
Guo G Q, Gan W P, Luo J, et al. Preparation and dispersive mechanism of highly dispersive ultrafine silver powder. Appl Surf Sci, 2010, 256(22): 6683 DOI: 10.1016/j.apsusc.2010.04.070
|
[8] |
郭学益, 邓多, 李宇, 等. 液相还原法制备微米级球形银粉及其分散机理. 中国有色金属学报, 2015, 25(9): 2484 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201509022.htm
Guo X Y, Deng D, Li Y, et al. Preparation of spherical microsized silver powder by liquid reduction method and its dispersion mechanism. Chin J Nonferrous Met, 2015, 25(9): 2484 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201509022.htm
|
[9] |
田庆华, 邓多, 焦翠燕, 等. 银氨体系抗坏血酸还原制备超细球形银粉. 中南大学学报(自然科学版), 2015, 46(12): 4404 DOI: 10.11817/j.issn.1672-7207.2015.12.003
Tian Q H, Deng D, Jiao C Y, et al. Preparation of ultra-fine spherical silver powder with reduction of tollens reagent by ascorbic acid. J Central South Univ Sci Technol, 2015, 46(12): 4404 DOI: 10.11817/j.issn.1672-7207.2015.12.003
|
[10] |
闫方存, 滕媛, 严继康, 等. 分散体系对微米银粉微观形貌及粒径影响研究. 稀有金属, 2017, 41(2): 173 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201702010.htm
Yan F C, Teng Y, Yan J K, et al. Impact of dispersion on morphology and particle size of micron grade silver powder. Chin J Rare Met, 2017, 41(2): 173 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201702010.htm
|
[11] |
唐鹿. 还原剂和分散剂对银粉粒径及微观形貌影响的研究. 材料导报, 2015, 29(26): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2004.htm
Tang L. Study of the influence of reducing agent and dispersant on the particle size and microstructure of silver powders. Mater Rev, 2015, 29(26): 13 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2004.htm
|
[12] |
滕媛, 闫方存, 李文琳, 等. 银浆用银粉制备工艺的综述. 材料导报, 2015, 29(25): 172 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S1045.htm
Teng Y, Yan F C, Li W L, et al. Review of preparation of silver powder used in silver paste. Mater Rev, 2015, 29(25): 172 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S1045.htm
|
[13] |
Tian X L, Li J, Pan S L. Facile synthesis of single-crystal silver nanowires through a tannin-reduction process. J Nanopart Res, 2009, 11: 1839 DOI: 10.1007/s11051-009-9700-4
|
[14] |
Yi Z, Li X B, Xu X B, et al. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids Surf A, 2011, 392(1): 131 DOI: 10.1016/j.colsurfa.2011.09.045
|
[15] |
黎应芬, 甘卫平, 周健, 等. 液相化学法制备矩形银微米线. 中国有色金属学报, 2014, 24(12): 3088 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201412018.htm
Li Y F, Gan W P, Zhou J, et al. Synthesis of rectangular silver microwires by solution-phase chemical method. Chin J Nonferrous Met, 2014, 24(12): 3088 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201412018.htm
|
[16] |
孙达旺. 植物单宁化学. 北京: 中国林业出版社, 1992
Sun D W. The Chemistry of Vegetable Tannin. Beijing: China Forestry Press, 1992
|
[1] | DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013 |
[2] | YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009 |
[3] | Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011 |
[4] | Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116. |
[5] | Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272. |
[6] | Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219. |
[7] | Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43. |
[8] | Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171. |
[9] | Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15. |
[10] | Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15. |