Citation: | FENG Jun, JIANG Zhong-tao, HAN Qi-lin. Research progress on discontinuous reinforced titanium matrix composites[J]. Powder Metallurgy Technology, 2020, 38(5): 391-398. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070001 |
[1] |
武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术. 2019, 37(3): 225 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903011.htm
Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903011.htm
|
[2] |
刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012
Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012
|
[3] |
Elkhateeb M G, Shin Y C. Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface. Mater Des, 2018, 155: 161 DOI: 10.1016/j.matdes.2018.05.054
|
[4] |
刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803010.htm
Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803010.htm
|
[5] |
Zhang C, Guo Z M, Yang F, et al. In situ formation of low interstitials Ti–TiC composites by gas-solid reaction. J Alloys Compd, 2018, 769: 37 DOI: 10.1016/j.jallcom.2018.07.344
|
[6] |
Feng Y J, Cui G R, Zhang W C, et al. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by pre-sintering and canned extrusion. J Alloys Compd, 2018, 738: 164 DOI: 10.1016/j.jallcom.2017.12.132
|
[7] |
Yi M, Zhang X Z, Liu G W, et al. Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti6Al4V composites from Ti–B4C–C and Ti–TiB2–TiC systems. Mater Charact, 2018, 140: 281 DOI: 10.1016/j.matchar.2018.04.010
|
[8] |
Huang L Q, Ma Q, Liu Z M, et al. In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. J Alloys Compd, 2018, 735: 2640 DOI: 10.1016/j.jallcom.2017.11.238
|
[9] |
Rielli V V, Amigó-Borrás V, Contieri R J. Microstructural evolution and mechanical properties of in-situ as-cast beta titanium matrix composites. J Alloys Compd, 2019, 778: 186 DOI: 10.1016/j.jallcom.2018.11.093
|
[10] |
Song Y, Chen Y, Liu W W, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater Des, 2016, 109: 256 DOI: 10.1016/j.matdes.2016.07.077
|
[11] |
Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Mater Sci Eng A, 2018, 725: 541 DOI: 10.1016/j.msea.2018.04.056
|
[12] |
Munir K S, Li Y C, Lin J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3: 122 DOI: 10.1016/j.mtla.2018.08.015
|
[13] |
Munir K S, Zheng Y F, Zhang D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A, 2017, 696: 10 DOI: 10.1016/j.msea.2017.04.026
|
[14] |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review. Mater Des, 2019, 164: 107552 DOI: 10.1016/j.matdes.2018.107552
|
[15] |
Wang F, Mei J, Jiang H, et al. Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed. Mater Sci Eng A, 2007, 445: 461 http://www.sciencedirect.com/science/article/pii/S0921509306020806
|
[16] |
Liu S Y, Shin Y C. Simulation and experimental studies on microstructure evolution of resolidified dendritic TiCx in laser direct deposited Ti–TiC composite. Mater Des, 2018, 159: 212 http://www.sciencedirect.com/science/article/pii/S0264127518306816
|
[17] |
Liu S Y, Shin Y C. The influences of melting degree of TiC reinforcements on microstructure and mechanical properties of laser direct deposited Ti6Al4V–TiC composites. Mater Des, 2017, 136: 185 DOI: 10.1016/j.matdes.2017.09.063
|
[18] |
Wang H W, Qi J Q, Zou C M, et al. High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites. Mater Sci Eng A, 2012, 545: 209 DOI: 10.1016/j.msea.2012.03.037
|
[19] |
Liu Y B, Liu Y, Tang H P, et al. Reactive sintering mechanism of Ti+Mo2C and Ti+VC powder compacts. J Mater Sci, 2011, 46(4): 902 DOI: 10.1007/s10853-010-4833-5
|
[20] |
Liu Y B, Liu Y, Tang H P, et al. Fabrication and mechanical properties of in situ TiC/Ti metal matrix composites. J Alloys Compd, 2011, 509(8): 3592 DOI: 10.1016/j.jallcom.2010.12.086
|
[21] |
Liu Y B, Liu Y, Zhao Z W, et al. Effect of addition of metal carbide on the oxidation behaviors of titanium matrix composites. J Alloys Compd, 2014, 599: 188 DOI: 10.1016/j.jallcom.2014.02.056
|
[22] |
Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites. Carbon, 2018, 137: 146 DOI: 10.1016/j.carbon.2018.05.013
|
[23] |
Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater Sci Eng A, 2018, 687: 164 http://www.sciencedirect.com/science/article/pii/S0921509317300989
|
[24] |
Wang F C, Zhang Z H, Sun Y J, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon, 2015, 95: 396 DOI: 10.1016/j.carbon.2015.08.061
|
[25] |
Sribalaji M, Mukherjee B, Bakshi S R, et al. In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite. Composites Part B, 2017, 123: 227 DOI: 10.1016/j.compositesb.2017.05.035
|
[26] |
Li S F, Sun B, Imai H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Composites Part A, 2013, 48: 57 DOI: 10.1016/j.compositesa.2012.12.005
|
[27] |
Kim Y J, Chung H, Kang S J L. Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas-solid reaction. Mater Sci Eng A, 2002, 333: 343 DOI: 10.1016/S0921-5093(01)01858-5
|
[28] |
尤力, 杨芳, 张策, 等. 气固反应原位生成TiC颗粒增强钛基复合材料. 粉末冶金技术, 2019, 37(3): 196 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903006.htm
You L, Yang F, Zhang C, et al. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction. Powder Metall Technol, 2019, 37(3): 196 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903006.htm
|
[29] |
Kim Y J, Chung H, Kang S J L. In situ formation of titanium carbide in titanium powder compacts by gas-solid reaction. Composites Part A, 2001, 32(5): 731 DOI: 10.1016/S1359-835X(99)00092-5
|
[30] |
Cai C, Radoslaw C, Zhang J L, et al. In-situ preparation and formation of TiB/Ti6Al4V nanocomposite via laser additive manufacturing: Microstructure evolution and tribological behavior. Powder Technol, 2019, 342: 73 DOI: 10.1016/j.powtec.2018.09.088
|
[31] |
Huang L J, Yang F Y, Hu H T, et al. TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure. Mater Des, 2013, 51: 421 DOI: 10.1016/j.matdes.2013.04.048
|
[32] |
Huang L J, Wang S, Dong Y S, et al. Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites. Mater Sci Eng A, 2012, 545: 187 DOI: 10.1016/j.msea.2012.03.019
|
[33] |
Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog Mater Sci, 2015, 71: 93 DOI: 10.1016/j.pmatsci.2015.01.002
|
[34] |
Zhang R, Wang D J, Huang L J, et al. Deformation behaviors and microstructure evolution of TiBw/TA15 composite with novel network architecture. J Alloys Compd, 2017, 722: 970 DOI: 10.1016/j.jallcom.2017.06.197
|
[35] |
Tabrizi S G, Sajjadi S A, Babakhani A, et al. Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A, 2015, 624: 271 DOI: 10.1016/j.msea.2014.11.036
|
[36] |
Li S F, Kondoh K, Imai H, et al. Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des, 2016, 95: 127 DOI: 10.1016/j.matdes.2016.01.092
|
[37] |
Choi B J, Kim I L Y, Lee Y Z, et al. Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites. Wear, 2014, 318(1-2): 68 DOI: 10.1016/j.wear.2014.05.013
|
[38] |
Hu Z Y, Cheng X W, Li S L, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites. J Alloys Compd, 2017, 726: 240 DOI: 10.1016/j.jallcom.2017.08.017
|
[39] |
Huang L Q, Wang L H, Ma Q, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scripta Mater, 2017, 141: 133 DOI: 10.1016/j.scriptamat.2017.08.007
|
[40] |
Cao Z, Wang X D, Li J L, et al. Reinforcement with graphene nanoflakes in titanium matrix composites. J Alloys Compd, 2017, 696: 498 DOI: 10.1016/j.jallcom.2016.11.302
|
[41] |
Dong L L, Xiao B, Liu Y, et al. Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides. Ceram Int, 2018, 44(15): 17835 DOI: 10.1016/j.ceramint.2018.06.252
|
[42] |
Vasanthakumar K, Karthiselva N S, Chawake N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J Alloys Compd, 2017, 709: 829 DOI: 10.1016/j.jallcom.2017.03.216
|
[43] |
Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites. Carbon, 2017, 115: 720 DOI: 10.1016/j.carbon.2017.01.062
|
[44] |
Kondoh K, Threrujirapapong T, Umeda J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos Sci Technol, 2012, 72(11): 1291 DOI: 10.1016/j.compscitech.2012.05.002
|
[45] |
Sun Q, Yang Y Q, Luo X. Interfacial fracture toughness of fiber reinforced titanium matrix composites by push out test. Rare Met Mater Eng, 2017, 46(10): 2794 DOI: 10.1016/S1875-5372(18)30009-2
|
1. |
魏民,王子宁,谭志涵. 基于NSGA-II的TiBw/TA15铣削参数多目标优化. 北华航天工业学院学报. 2025(01): 1-5 .
![]() | |
2. |
李婉莹,韩秀丽,张强,王锐,武高辉. GO/Ti基复合材料界面性质的第一性原理研究. 精密成形工程. 2024(04): 10-18 .
![]() | |
3. |
戴昌晟,高义民,缪喆宇,肖鹏,李烨飞,李强. 非均匀构型TiB增强钛基复合材料的制备及其组织性能研究. 热加工工艺. 2024(23): 52-59+68 .
![]() | |
4. |
钟亮,付玉,曹召勋,王荫洋,徐永东. (Ti_5Si_3+TiB_w)/TC11复合材料力学性能与摩擦学性能. 有色金属工程. 2023(02): 22-32 .
![]() | |
5. |
廖婷婷,江万勇,陈嘉鑫. 热压烧结制备碳化钛增强石墨烯/铜复合材料的力学及其摩擦性能探究. 热加工工艺. 2023(14): 64-66+70 .
![]() | |
6. |
欧阳文博,任利娜,黄先明,陈永楠. 铜与氧化石墨烯协同增强钛基复合材料显微组织及性能研究. 钛工业进展. 2022(04): 25-29 .
![]() | |
7. |
刘莹莹,付明杰,王富鑫,何恩光. 激光焊接TiB_w/TA15复合材料组织结构演变. 材料科学与工艺. 2022(05): 60-68 .
![]() | |
8. |
魏子超,韩远飞,李劭鹏,黄光法,毛建伟,吕维洁. 非连续纳米相增强钛基复合材料研究进展与展望. 航空制造技术. 2022(16): 104-125 .
![]() | |
9. |
李少夫,杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展. 粉末冶金技术. 2022(05): 421-430+450 .
![]() | |
10. |
刘壮,周昆,吕凯红. 热加工对钛基复合材料组织和性能的影响. 广东化工. 2021(10): 1-3+16 .
![]() | |
11. |
杨淑贞,王明. 数字图像处理的TiC/钨基复合材料烧蚀形貌重构. 兵器材料科学与工程. 2021(05): 92-96 .
![]() |