AdvancedSearch
FENG Jun, JIANG Zhong-tao, HAN Qi-lin. Research progress on discontinuous reinforced titanium matrix composites[J]. Powder Metallurgy Technology, 2020, 38(5): 391-398. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070001
Citation: FENG Jun, JIANG Zhong-tao, HAN Qi-lin. Research progress on discontinuous reinforced titanium matrix composites[J]. Powder Metallurgy Technology, 2020, 38(5): 391-398. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070001

Research progress on discontinuous reinforced titanium matrix composites

More Information
  • The discontinuous reinforcements can effectively improve the mechanical properties, wear resistance, high temperature strength, and oxidation resistance of the titanium matrix, broadening the application fields of titanium materials. Ceramic reinforced phases have become the preferred reinforcements for the discontinuously reinforced titanium matrix composites because of the high hardness, good wear resistance, thermal stability, and low cost, and the TiC particles and TiB fibers are the most widely used. In addition, the nano-carbon materials have also become the most potential reinforcement materials of titanium matrix composites in recent years, due to the excellent properties such as high elastic modulus and high tensile strength, the nano-carbon materials can effectively improve the strength and plasticity of the titanium matrix. In this paper, based on the selection of reinforcements, the research progress of the discontinuously reinforced titanium matrix composites were summarized in the last decade, the effects of different reinforced materials on the microstructure and mechanical properties of titanium matrix and the strengthening mechanism were summarized, and the further research direction was put forward, which provided a certain basis for improving the overall properties of titanium matrix composites and expanding their application.
  • [1]
    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术. 2019, 37(3): 225 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903011.htm

    Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903011.htm
    [2]
    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012

    Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012
    [3]
    Elkhateeb M G, Shin Y C. Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface. Mater Des, 2018, 155: 161 DOI: 10.1016/j.matdes.2018.05.054
    [4]
    刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803010.htm

    Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201803010.htm
    [5]
    Zhang C, Guo Z M, Yang F, et al. In situ formation of low interstitials Ti–TiC composites by gas-solid reaction. J Alloys Compd, 2018, 769: 37 DOI: 10.1016/j.jallcom.2018.07.344
    [6]
    Feng Y J, Cui G R, Zhang W C, et al. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by pre-sintering and canned extrusion. J Alloys Compd, 2018, 738: 164 DOI: 10.1016/j.jallcom.2017.12.132
    [7]
    Yi M, Zhang X Z, Liu G W, et al. Comparative investigation on microstructures and mechanical properties of (TiB + TiC)/Ti6Al4V composites from Ti–B4C–C and Ti–TiB2–TiC systems. Mater Charact, 2018, 140: 281 DOI: 10.1016/j.matchar.2018.04.010
    [8]
    Huang L Q, Ma Q, Liu Z M, et al. In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. J Alloys Compd, 2018, 735: 2640 DOI: 10.1016/j.jallcom.2017.11.238
    [9]
    Rielli V V, Amigó-Borrás V, Contieri R J. Microstructural evolution and mechanical properties of in-situ as-cast beta titanium matrix composites. J Alloys Compd, 2019, 778: 186 DOI: 10.1016/j.jallcom.2018.11.093
    [10]
    Song Y, Chen Y, Liu W W, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater Des, 2016, 109: 256 DOI: 10.1016/j.matdes.2016.07.077
    [11]
    Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Mater Sci Eng A, 2018, 725: 541 DOI: 10.1016/j.msea.2018.04.056
    [12]
    Munir K S, Li Y C, Lin J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3: 122 DOI: 10.1016/j.mtla.2018.08.015
    [13]
    Munir K S, Zheng Y F, Zhang D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A, 2017, 696: 10 DOI: 10.1016/j.msea.2017.04.026
    [14]
    Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review. Mater Des, 2019, 164: 107552 DOI: 10.1016/j.matdes.2018.107552
    [15]
    Wang F, Mei J, Jiang H, et al. Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed. Mater Sci Eng A, 2007, 445: 461 http://www.sciencedirect.com/science/article/pii/S0921509306020806
    [16]
    Liu S Y, Shin Y C. Simulation and experimental studies on microstructure evolution of resolidified dendritic TiCx in laser direct deposited Ti–TiC composite. Mater Des, 2018, 159: 212 http://www.sciencedirect.com/science/article/pii/S0264127518306816
    [17]
    Liu S Y, Shin Y C. The influences of melting degree of TiC reinforcements on microstructure and mechanical properties of laser direct deposited Ti6Al4V–TiC composites. Mater Des, 2017, 136: 185 DOI: 10.1016/j.matdes.2017.09.063
    [18]
    Wang H W, Qi J Q, Zou C M, et al. High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites. Mater Sci Eng A, 2012, 545: 209 DOI: 10.1016/j.msea.2012.03.037
    [19]
    Liu Y B, Liu Y, Tang H P, et al. Reactive sintering mechanism of Ti+Mo2C and Ti+VC powder compacts. J Mater Sci, 2011, 46(4): 902 DOI: 10.1007/s10853-010-4833-5
    [20]
    Liu Y B, Liu Y, Tang H P, et al. Fabrication and mechanical properties of in situ TiC/Ti metal matrix composites. J Alloys Compd, 2011, 509(8): 3592 DOI: 10.1016/j.jallcom.2010.12.086
    [21]
    Liu Y B, Liu Y, Zhao Z W, et al. Effect of addition of metal carbide on the oxidation behaviors of titanium matrix composites. J Alloys Compd, 2014, 599: 188 DOI: 10.1016/j.jallcom.2014.02.056
    [22]
    Mu X N, Cai H N, Zhang H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites. Carbon, 2018, 137: 146 DOI: 10.1016/j.carbon.2018.05.013
    [23]
    Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater Sci Eng A, 2018, 687: 164 http://www.sciencedirect.com/science/article/pii/S0921509317300989
    [24]
    Wang F C, Zhang Z H, Sun Y J, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon, 2015, 95: 396 DOI: 10.1016/j.carbon.2015.08.061
    [25]
    Sribalaji M, Mukherjee B, Bakshi S R, et al. In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite. Composites Part B, 2017, 123: 227 DOI: 10.1016/j.compositesb.2017.05.035
    [26]
    Li S F, Sun B, Imai H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Composites Part A, 2013, 48: 57 DOI: 10.1016/j.compositesa.2012.12.005
    [27]
    Kim Y J, Chung H, Kang S J L. Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas-solid reaction. Mater Sci Eng A, 2002, 333: 343 DOI: 10.1016/S0921-5093(01)01858-5
    [28]
    尤力, 杨芳, 张策, 等. 气固反应原位生成TiC颗粒增强钛基复合材料. 粉末冶金技术, 2019, 37(3): 196 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903006.htm

    You L, Yang F, Zhang C, et al. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction. Powder Metall Technol, 2019, 37(3): 196 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201903006.htm
    [29]
    Kim Y J, Chung H, Kang S J L. In situ formation of titanium carbide in titanium powder compacts by gas-solid reaction. Composites Part A, 2001, 32(5): 731 DOI: 10.1016/S1359-835X(99)00092-5
    [30]
    Cai C, Radoslaw C, Zhang J L, et al. In-situ preparation and formation of TiB/Ti6Al4V nanocomposite via laser additive manufacturing: Microstructure evolution and tribological behavior. Powder Technol, 2019, 342: 73 DOI: 10.1016/j.powtec.2018.09.088
    [31]
    Huang L J, Yang F Y, Hu H T, et al. TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure. Mater Des, 2013, 51: 421 DOI: 10.1016/j.matdes.2013.04.048
    [32]
    Huang L J, Wang S, Dong Y S, et al. Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites. Mater Sci Eng A, 2012, 545: 187 DOI: 10.1016/j.msea.2012.03.019
    [33]
    Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog Mater Sci, 2015, 71: 93 DOI: 10.1016/j.pmatsci.2015.01.002
    [34]
    Zhang R, Wang D J, Huang L J, et al. Deformation behaviors and microstructure evolution of TiBw/TA15 composite with novel network architecture. J Alloys Compd, 2017, 722: 970 DOI: 10.1016/j.jallcom.2017.06.197
    [35]
    Tabrizi S G, Sajjadi S A, Babakhani A, et al. Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A, 2015, 624: 271 DOI: 10.1016/j.msea.2014.11.036
    [36]
    Li S F, Kondoh K, Imai H, et al. Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des, 2016, 95: 127 DOI: 10.1016/j.matdes.2016.01.092
    [37]
    Choi B J, Kim I L Y, Lee Y Z, et al. Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites. Wear, 2014, 318(1-2): 68 DOI: 10.1016/j.wear.2014.05.013
    [38]
    Hu Z Y, Cheng X W, Li S L, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites. J Alloys Compd, 2017, 726: 240 DOI: 10.1016/j.jallcom.2017.08.017
    [39]
    Huang L Q, Wang L H, Ma Q, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scripta Mater, 2017, 141: 133 DOI: 10.1016/j.scriptamat.2017.08.007
    [40]
    Cao Z, Wang X D, Li J L, et al. Reinforcement with graphene nanoflakes in titanium matrix composites. J Alloys Compd, 2017, 696: 498 DOI: 10.1016/j.jallcom.2016.11.302
    [41]
    Dong L L, Xiao B, Liu Y, et al. Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides. Ceram Int, 2018, 44(15): 17835 DOI: 10.1016/j.ceramint.2018.06.252
    [42]
    Vasanthakumar K, Karthiselva N S, Chawake N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J Alloys Compd, 2017, 709: 829 DOI: 10.1016/j.jallcom.2017.03.216
    [43]
    Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites. Carbon, 2017, 115: 720 DOI: 10.1016/j.carbon.2017.01.062
    [44]
    Kondoh K, Threrujirapapong T, Umeda J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos Sci Technol, 2012, 72(11): 1291 DOI: 10.1016/j.compscitech.2012.05.002
    [45]
    Sun Q, Yang Y Q, Luo X. Interfacial fracture toughness of fiber reinforced titanium matrix composites by push out test. Rare Met Mater Eng, 2017, 46(10): 2794 DOI: 10.1016/S1875-5372(18)30009-2
  • Cited by

    Periodical cited type(11)

    1. 魏民,王子宁,谭志涵. 基于NSGA-II的TiBw/TA15铣削参数多目标优化. 北华航天工业学院学报. 2025(01): 1-5 .
    2. 李婉莹,韩秀丽,张强,王锐,武高辉. GO/Ti基复合材料界面性质的第一性原理研究. 精密成形工程. 2024(04): 10-18 .
    3. 戴昌晟,高义民,缪喆宇,肖鹏,李烨飞,李强. 非均匀构型TiB增强钛基复合材料的制备及其组织性能研究. 热加工工艺. 2024(23): 52-59+68 .
    4. 钟亮,付玉,曹召勋,王荫洋,徐永东. (Ti_5Si_3+TiB_w)/TC11复合材料力学性能与摩擦学性能. 有色金属工程. 2023(02): 22-32 .
    5. 廖婷婷,江万勇,陈嘉鑫. 热压烧结制备碳化钛增强石墨烯/铜复合材料的力学及其摩擦性能探究. 热加工工艺. 2023(14): 64-66+70 .
    6. 欧阳文博,任利娜,黄先明,陈永楠. 铜与氧化石墨烯协同增强钛基复合材料显微组织及性能研究. 钛工业进展. 2022(04): 25-29 .
    7. 刘莹莹,付明杰,王富鑫,何恩光. 激光焊接TiB_w/TA15复合材料组织结构演变. 材料科学与工艺. 2022(05): 60-68 .
    8. 魏子超,韩远飞,李劭鹏,黄光法,毛建伟,吕维洁. 非连续纳米相增强钛基复合材料研究进展与展望. 航空制造技术. 2022(16): 104-125 .
    9. 李少夫,杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展. 粉末冶金技术. 2022(05): 421-430+450 . 本站查看
    10. 刘壮,周昆,吕凯红. 热加工对钛基复合材料组织和性能的影响. 广东化工. 2021(10): 1-3+16 .
    11. 杨淑贞,王明. 数字图像处理的TiC/钨基复合材料烧蚀形貌重构. 兵器材料科学与工程. 2021(05): 92-96 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (784) PDF downloads (67) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return