AdvancedSearch
NI Feng, SUN Gao-ang, LI Wu-hui, FU Li-hua, LI Ling, MENG Yun-na, FAN Ya-li. Effects of sintering temperature on microstructures and properties of Cu-C-SnO2 porous materials[J]. Powder Metallurgy Technology, 2020, 38(6): 436-442. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070008
Citation: NI Feng, SUN Gao-ang, LI Wu-hui, FU Li-hua, LI Ling, MENG Yun-na, FAN Ya-li. Effects of sintering temperature on microstructures and properties of Cu-C-SnO2 porous materials[J]. Powder Metallurgy Technology, 2020, 38(6): 436-442. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070008

Effects of sintering temperature on microstructures and properties of Cu-C-SnO2 porous materials

More Information
  • The Cu-C-SnO2 composite porous materials were prepared by pressureless sintering with the addition of SiO2-B2O3-Al2O3 scaling powders. The effects of sintering temperature on the microstructures and properties of the Cu-C-SnO2 porous composites were investigated. The results show that, the porous composites are composed of metal Cu, graphite, and oxide ceramic phases. As the sintering temperature increases, the content of SnO2 decreases and the content of oxide ceramic phases (such as mullite) increases. The content of Cu2O increases when the sintering temperature rises from 750 ℃ to 800 ℃, which decreases as the sintering temperature above 800 ℃. At the sintering temperature of 950 ℃, the Cu grains coarsen observably because of the recrystallization. The electric resistivity, oil penetration rate, and air permeability coefficient of the composites vary similarly with the change of the sintering temperature, and there are the minimum values in the sintering temperature range of 850 ℃ to 900 ℃. The sintering shrinkage and density of the sintered compact vary similarly with the change of the sintering temperature, and there are the critical values at the sintering temperature near 800 ℃. The change rates of the sintering shrinkage and density of the sintered compact are significantly different on the both sides of the critical values. The hardness of the sintered compact increases with the rising of sintering temperature and shows a jump in the range of 800 ℃ to 850 ℃.
  • [1]
    Fedorchenko I M. Tendencies in creating composite materials for equipping friction assemblies. Sov Powder Metall Met Ceram, 1992, 31(5): 408 DOI: 10.1007/BF00796249
    [2]
    Becker A, Meffert D, Sauer B. Friction and wear investigations on single chain joints. Forsch Ingenieurwes, 2019, 83: 53 DOI: 10.1007/s10010-019-00297-x
    [3]
    林雪杨, 刘如铁, 熊翔, 等. 石墨粒度及沥青黏结剂对铜-石墨电刷材料性能的影响. 中国有色金属学报, 2017, 27(7): 1411 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201707012.htm

    Lin X Y, Liu R T, Xiong X, et al. Effects of graphite granularity and pitch binder on properties of copper-graphite brush. Chin J Nonferrous Met, 2017, 27(7): 1411 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201707012.htm
    [4]
    张钦钊, 李强, 王爱香, 等. 铜-石墨自润滑触头材料的研究进展. 材料导报, 2005, 19(2): 43 DOI: 10.3321/j.issn:1005-023X.2005.02.013

    Zhang Q Z, Li Q, Wang A X, et al. Recent development in copper-graphite self-lubrication contact materials. Mater Rev, 2005, 19(2): 43 DOI: 10.3321/j.issn:1005-023X.2005.02.013
    [5]
    朱成才, 张鹏, 杜云慧, 等. 性能卓越的铜石墨受电弓滑板. 铁道机车车辆, 2006, 26(3): 62 DOI: 10.3969/j.issn.1008-7842.2006.03.022

    Zhu C C, Zhang P, Du Y H, et al. Copper-graphite pantograph slide plate with superexcellent performance. Railway Locomot Car, 2006, 26(3): 62 DOI: 10.3969/j.issn.1008-7842.2006.03.022
    [6]
    Sanderow H I, Pease L F. 全球烧结金属含油轴承评定. 粉末冶金技术, 2008, 26(1): 65 http://pmt.ustb.edu.cn/article/id/fmyjjs200801016

    Sanderow H I, Pease L F. Evaluation of global PM oil-impregnated bearings. Powder Metall Technol, 2008, 26(1): 65 http://pmt.ustb.edu.cn/article/id/fmyjjs200801016
    [7]
    付沛, 何国球. 铜石墨受电靴材料研究进展. 金属功能材料, 2010, 17(1): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201001020.htm

    Fu P, He G Q. Research progress of Cu-C current collector shoe materials. Met Funct Mater, 2010, 17(1): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201001020.htm
    [8]
    张国玺. 石墨含量及粒度对铜-镀铜石墨复合材料性能的影响. 粉末冶金技术, 2016, 34(3): 196 DOI: 10.3969/j.issn.1001-3784.2016.03.007

    Zhang G X. Effects of copper-coated graphite content and particle size on properties of the Cu/copper-coated graphite composite. Powder Metall Technol, 2016, 34(3): 196 DOI: 10.3969/j.issn.1001-3784.2016.03.007
    [9]
    郭应国. 轴承材料的新进展. 热加工工艺, 1996, 25(5): 44 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY605.019.htm

    Guo Y G. New progress of bearing materials. Hot Working Technol, 1996, 25(5): 44 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY605.019.htm
    [10]
    梁昌霞, 潘冶. 稀土氧化物对铁铜基粉末冶金轴承材料性能的影响. 润滑与密封, 2010, 35(1): 62 DOI: 10.3969/j.issn.0254-0150.2010.01.017

    Liang C X, Pan Y. The effect of rare earth oxides on the properties of powder metallurgy iron-bronze based bearing materials. Lubr Eng, 2010, 35(1): 62 DOI: 10.3969/j.issn.0254-0150.2010.01.017
    [11]
    Couillaud S, Lu Y F, Silvain J F. Thermal conductivity improvement of copper-carbon fiber composite by addition of an insulator: calcium hydroxide. J Mater Sci, 2014, 49(16): 5537 DOI: 10.1007/s10853-014-8246-8
    [12]
    周永涛, 杨学林, 黄晨, 等. 二氧化锡/石墨复合负极材料制备与电化学性能. 电源技术, 2014, 38(6): 1045 DOI: 10.3969/j.issn.1002-087X.2014.06.017

    Zhou Y T, Yang X L, Huang C, et al. Synthesis and electrochemical properties of SnO2/graphite composite anode materials. Chin J Power Sources, 2014, 38(6): 1045 DOI: 10.3969/j.issn.1002-087X.2014.06.017
    [13]
    白雪君, 侯敏, 刘婵, 等. 锂离子电池用三维氧化锡/石墨烯水凝胶负极材料. 物理化学学报, 2017, 33(2): 377 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201702016.htm

    Bai X J, Hou M, Liu C, et al. 3D SnO2/graphene hydrogel anode material for lithium-ion battery. Acta Phys Chim Sin, 2017, 33(2): 377 https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201702016.htm
    [14]
    罗保民, 李芬芬, 蒋婷婷, 等. 铂/二氧化锡/石墨烯复合催化剂的制备及其催化甲醇氧化性能. 广东化工, 2017, 44(11): 51 DOI: 10.3969/j.issn.1007-1865.2017.11.023

    Luo B M, Li F F, Jiang T T, et al. Synthesis of Pt/SnO2/graphene composite catalyst and its electro-catalytic properties to methanol oxidation. Guangdong Chem Ind, 2017, 44(11): 51 DOI: 10.3969/j.issn.1007-1865.2017.11.023
    [15]
    倪锋, 傅丽华, 邓攀, 等. SiO2-B2O3-Al2O3助焊剂对粉末烧结Cu-C-SnO2多孔材料组织与性能的影响. 粉末冶金技术. 2018, 36(5): 335 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.003

    Ni F, Fu L H, Deng P, et al. Effects of SiO2-B2O3-Al2O3 scaling powder on microstructures and properties of Cu-C-SnO2 porous materials sintered by powders. Powder Metall Technol, 2018, 36(5): 335 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.003
    [16]
    梁基照, 杨铨铨. 导电高分子复合材料逾渗阈值的预测. 华南理工大学学报(自然科学版), 2007, 35(8): 80 DOI: 10.3321/j.issn:1000-565x.2007.08.016

    Liang J Z, Yang Q Q. Predication of percolation threshold of conductive polymer composites. J S China Univ Technol Nat Sci, 2007, 35(8): 80 DOI: 10.3321/j.issn:1000-565x.2007.08.016
    [17]
    Felege G N, Gurao N P, Upadhyaya A. Evolution of microtexture and microstructure during sintering of copper. Metall Mater Trans A, 2019, 50: 4193 DOI: 10.1007/s11661-019-05317-7
    [18]
    魏寿昆. 冶金过程热力学. 北京: 科学出版社, 2010

    Wei S K. Thermodynamics of Metallurgical Process. Beijing: Science Press, 2010
  • Cited by

    Periodical cited type(2)

    1. 初建鹏,冯建程,鞠翔宇,姜涛. 动载作用下高强度钢的层裂特性研究. 兵器材料科学与工程. 2024(02): 129-135 .
    2. 班伟,陈嘉琪,刘璐璐,葛涛,张帅. 紧耦合气雾化喷嘴流场特性研究. 粉末冶金技术. 2024(03): 312-319 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (575) PDF downloads (26) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return