Citation: | TAN Shu-lin, ZHANG Xiao-min, ZHAO Zhi-peng, WU Zhou-zhi, ZHANG Heng-jia. System simulation of multi-physical field coupling in electric current-assisted sintering[J]. Powder Metallurgy Technology, 2020, 38(6): 414-422. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080003 |
[1] |
Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 DOI: 10.1007/s10853-006-6555-2
|
[2] |
Fabrizio M, Giorgi C, Morro A. A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Phys D, 2006, 214(2): 144 DOI: 10.1016/j.physd.2006.01.002
|
[3] |
Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 DOI: 10.1002/adem.201300409
|
[4] |
Tokita M. Mechanism of spark plasma sintering//Proceedings of the 2000 Powder Metallurgy World Congress. Tokyo, 2000: 729
|
[5] |
Olevsky E, Kandukuri S, Froyen L. Analysis of mechanisms of spark-plasma sintering. Key Eng Mater, 2008, 368-372: 1580 DOI: 10.4028/www.scientific.net/KEM.368-372.1580
|
[6] |
Mcwilliams B, Yu J, Zavaliangos A. Fully coupled thermal-electric-sintering simulation of electric field assisted sintering of net-shape compacts. J Mater Sci, 2015, 50(2): 519 DOI: 10.1007/s10853-014-8463-1
|
[7] |
Olevsky E A, Garcia-Cardona C, Bradbury W L, et al. Fundamental aspects of spark plasma sintering: Ⅱ. finite element analysis of scalability. J Am Ceram Soc, 2012, 95(8): 2414 DOI: 10.1111/j.1551-2916.2012.05096.x
|
[8] |
Garcia C, Olevsky E. Numerical simulation of spark plasma sintering. Adv Sci Technol, 2010, 63: 58 DOI: 10.4028/www.scientific.net/AST.63.58
|
[9] |
Schwertz M, Katz A, Sorrel E, et al. Coupled electro-thermo-mechanical finite element modeling of the spark plasma sintering technique. Metall Mater Trans B, 2016, 47B: 1263
|
[10] |
Yan Z M, Zhang X M, Tan S L, et al. Numerical investigation on nonisothermal solid diffusion without phase transition using a full coupling theory combine with phase field method. Numer Heat Transfer, Part A, 2018, 74(2): 1018 DOI: 10.1080/10407782.2018.1469885
|
[11] |
Nose M, Nagae T, Yokota M. Sintering mechanisms of mechanically alloyed 2Nb/Al powder by Puls current pressure sintering. J Jpn Soc Powder Powder Metall, 1998, 45(7): 670 DOI: 10.2497/jjspm.45.670
|
[12] |
Huntington H B, Grone A R. Current-induced marker motion in gold wires. J Phys Chem Solids, 1961, 20(1-2): 76 DOI: 10.1016/0022-3697(61)90138-X
|
[13] |
Munir Z A, Quach D V, Ohyanagi M. Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc, 2011, 94(1): 1 DOI: 10.1111/j.1551-2916.2010.04210.x
|
[14] |
Lee G, Olevsky E A, Manière C, et al. Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Mater, 2018, 144: 524 DOI: 10.1016/j.actamat.2017.11.010
|
[15] |
Achari K M R, Reddy M B, Ramachander R B. Evaluation of activation energy in sintered samples. J Mater Sci, 1988, 23(5): 1673 DOI: 10.1007/BF01115706
|
[16] |
Fang T T, Shiue J T, Shiau F S. On the evaluation of the activation energy of sintering. Mater Chem Phys, 2003, 80(1): 108 DOI: 10.1016/S0254-0584(02)00373-5
|
[17] |
Ray D A, Kaur S, Cutler R A, et al. Effect of additives on the activation energy for sintering of silicon carbide. J Am Ceram Soc, 2008, 91(4): 1135 DOI: 10.1111/j.1551-2916.2008.02271.x
|
[18] |
Antou G, Guyot P, Pradeilles N, et al. Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina. J Mater Sci, 2015, 50(5): 2327 DOI: 10.1007/s10853-014-8804-0
|
[19] |
Bernard-Granger G, Guizard C. Spark plasma sintering of a commercially available granulated zirconia powder: Ⅰ. Sintering path and hypotheses about the mechanism (s) controlling densification. Acta Mater, 2007, 55(10): 3493 DOI: 10.1016/j.actamat.2007.01.048
|
[20] |
陈曦, 杨刚, 杨屹, 等. 多物理场耦合烧结纯铁粉的动力学及机制. 材料热处理学报, 2014, 35(2): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201402005.htm
Chen X, Yang G, Yang Y, et al. Sintering dynamics and mechanism of multi-physics fields coupling sintering for pure iron powder. Trans Mater Heat Treat, 2014, 35(2): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201402005.htm
|
[21] |
Kondo T, Kuramoto T, Kodera Y, et al. Enhanced growth of Mo2C formed in Mo-C diffusion couple by pulsed DC current. J Jpn Soc Powder Powder Metall, 2008, 55(9): 643 DOI: 10.2497/jjspm.55.643
|
[22] |
Garay J E, Anselmi-Tamburini U, Munir Z A. Enhanced growth of intermetallic phases in the Ni-Ti system by current effects. Acta Mater, 2003, 51(15): 4487 DOI: 10.1016/S1359-6454(03)00284-2
|
[23] |
Biswas S, Schwen D, Tomar V. Implementation of a phase field model for simulating evolution of two powder particles representing microstructural changes during sintering. J Mater Sci, 2018, 53: 5799 DOI: 10.1007/s10853-017-1846-3
|
[24] |
Sherief H H, Hamza F A, Saleh H A. The theory of generalized thermoelastic diffusion. Int J Eng Sci, 2004, 42(5-6): 591 DOI: 10.1016/j.ijengsci.2003.05.001
|
[25] |
Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution. Calphad, 2008, 32(2): 268 DOI: 10.1016/j.calphad.2007.11.003
|
[26] |
Kuang Z B. Theory of Electroelasticity. Shanghai: Shanghai Jiao Tong University Press, 2014
|
[27] |
Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach. Acta Mater, 2006, 54(4): 953 DOI: 10.1016/j.actamat.2005.10.032
|
[28] |
Manière C, Pavia A, Durand L, et al. Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process. J Eur Ceram Soc, 2016, 36(3): 741 DOI: 10.1016/j.jeurceramsoc.2015.10.033
|
[29] |
Bothara M G, Atre S V, Park S J, et al. Sintering behavior of nanocrystalline silicon carbide using a plasma pressure compaction system: master sintering curve analysis. Metall Mater Trans A, 2010, 41(12): 3252 DOI: 10.1007/s11661-010-0378-0
|
[30] |
Mikić B B. Thermal contact conductance; theoretical considerations. Int J Heat Mass Transfer, 1974, 17(2): 205 DOI: 10.1016/0017-9310(74)90082-9
|
[31] |
薛忠刚, 赵亚林. 600碳化硅陶瓷的粉末注射成形及其导电特性. 高新技术, 2012, 9: 17 https://www.cnki.com.cn/Article/CJFDTOTAL-XPJX201209017.htm
Xue Z G, Zhao Y L. Powder injection molding and conductive properties of 600 SiC ceramics, New Technol New Prod China, 2012, 9: 17 https://www.cnki.com.cn/Article/CJFDTOTAL-XPJX201209017.htm
|
[32] |
Kuczynski G C. Self-diffusion in sintering of metallic particles. Trans AIME, 1949, 85: 169 DOI: 10.1007/978-94-009-0741-6_33
|
[33] |
施剑林. 固相烧结-I气孔显微结构模型及其热力学稳定性, 致密化方程. 硅酸盐学报, 1997, 25(5): 499 DOI: 10.3321/j.issn:0454-5648.1997.05.001
Shi J L. Solid state sintering I-pore microstructural model and thermodynamic stability, densification equations, J Chin Ceram Soc, 1997, 25(5): 499 DOI: 10.3321/j.issn:0454-5648.1997.05.001
|
[34] |
Jana D C, Sundararajan G, Chattopadhyay K. Effective activation energy for the solid-state sintering of silicon carbide ceramics. Metall Mater Trans A, 2018, 49(11): 5599 DOI: 10.1007/s11661-018-4884-9
|
1. |
李静. 计算机仿真在粉末冶金过程的应用及研究进展. 粉末冶金技术. 2021(04): 366-372 .
![]() |