AdvancedSearch
TAN Shu-lin, ZHANG Xiao-min, ZHAO Zhi-peng, WU Zhou-zhi, ZHANG Heng-jia. System simulation of multi-physical field coupling in electric current-assisted sintering[J]. Powder Metallurgy Technology, 2020, 38(6): 414-422. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080003
Citation: TAN Shu-lin, ZHANG Xiao-min, ZHAO Zhi-peng, WU Zhou-zhi, ZHANG Heng-jia. System simulation of multi-physical field coupling in electric current-assisted sintering[J]. Powder Metallurgy Technology, 2020, 38(6): 414-422. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080003

System simulation of multi-physical field coupling in electric current-assisted sintering

More Information
  • Corresponding author:

    ZHANG Xiao-min, E-mail: xiaomin@cqu.edu.cn

  • Received Date: August 08, 2019
  • The densification mechanism of silicon carbide powders in electric current-assisted sintering was investigated by the phase field model based on the strongly thermo-mechano-electro-diffusional coupling theory. The influence of current density on the activation energy of sintering was introduced into the coupled equations by the diffusion coefficient, and the real-time effects of activation on the diffusion were characterized in simulation. The relationships of conductivity and temperature for the silicon carbide materials were considered. The boundary conditions of current and temperature in the morphological evolution were identified by the macroscopic finite element method during the silicon carbide sintering. The results show that, the densification curves in the microstructure evolution simulations are consistent with the experimental results under the different heating rates. The calculations indicate that, the activation can greatly promote the densification process in electric current-assisted sintering. What's more, increasing the heating rate can also increase the diffusion driving force, thereby increasing the densification rate.
  • [1]
    Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 DOI: 10.1007/s10853-006-6555-2
    [2]
    Fabrizio M, Giorgi C, Morro A. A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Phys D, 2006, 214(2): 144 DOI: 10.1016/j.physd.2006.01.002
    [3]
    Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 DOI: 10.1002/adem.201300409
    [4]
    Tokita M. Mechanism of spark plasma sintering//Proceedings of the 2000 Powder Metallurgy World Congress. Tokyo, 2000: 729
    [5]
    Olevsky E, Kandukuri S, Froyen L. Analysis of mechanisms of spark-plasma sintering. Key Eng Mater, 2008, 368-372: 1580 DOI: 10.4028/www.scientific.net/KEM.368-372.1580
    [6]
    Mcwilliams B, Yu J, Zavaliangos A. Fully coupled thermal-electric-sintering simulation of electric field assisted sintering of net-shape compacts. J Mater Sci, 2015, 50(2): 519 DOI: 10.1007/s10853-014-8463-1
    [7]
    Olevsky E A, Garcia-Cardona C, Bradbury W L, et al. Fundamental aspects of spark plasma sintering: Ⅱ. finite element analysis of scalability. J Am Ceram Soc, 2012, 95(8): 2414 DOI: 10.1111/j.1551-2916.2012.05096.x
    [8]
    Garcia C, Olevsky E. Numerical simulation of spark plasma sintering. Adv Sci Technol, 2010, 63: 58 DOI: 10.4028/www.scientific.net/AST.63.58
    [9]
    Schwertz M, Katz A, Sorrel E, et al. Coupled electro-thermo-mechanical finite element modeling of the spark plasma sintering technique. Metall Mater Trans B, 2016, 47B: 1263
    [10]
    Yan Z M, Zhang X M, Tan S L, et al. Numerical investigation on nonisothermal solid diffusion without phase transition using a full coupling theory combine with phase field method. Numer Heat Transfer, Part A, 2018, 74(2): 1018 DOI: 10.1080/10407782.2018.1469885
    [11]
    Nose M, Nagae T, Yokota M. Sintering mechanisms of mechanically alloyed 2Nb/Al powder by Puls current pressure sintering. J Jpn Soc Powder Powder Metall, 1998, 45(7): 670 DOI: 10.2497/jjspm.45.670
    [12]
    Huntington H B, Grone A R. Current-induced marker motion in gold wires. J Phys Chem Solids, 1961, 20(1-2): 76 DOI: 10.1016/0022-3697(61)90138-X
    [13]
    Munir Z A, Quach D V, Ohyanagi M. Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc, 2011, 94(1): 1 DOI: 10.1111/j.1551-2916.2010.04210.x
    [14]
    Lee G, Olevsky E A, Manière C, et al. Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Mater, 2018, 144: 524 DOI: 10.1016/j.actamat.2017.11.010
    [15]
    Achari K M R, Reddy M B, Ramachander R B. Evaluation of activation energy in sintered samples. J Mater Sci, 1988, 23(5): 1673 DOI: 10.1007/BF01115706
    [16]
    Fang T T, Shiue J T, Shiau F S. On the evaluation of the activation energy of sintering. Mater Chem Phys, 2003, 80(1): 108 DOI: 10.1016/S0254-0584(02)00373-5
    [17]
    Ray D A, Kaur S, Cutler R A, et al. Effect of additives on the activation energy for sintering of silicon carbide. J Am Ceram Soc, 2008, 91(4): 1135 DOI: 10.1111/j.1551-2916.2008.02271.x
    [18]
    Antou G, Guyot P, Pradeilles N, et al. Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina. J Mater Sci, 2015, 50(5): 2327 DOI: 10.1007/s10853-014-8804-0
    [19]
    Bernard-Granger G, Guizard C. Spark plasma sintering of a commercially available granulated zirconia powder: Ⅰ. Sintering path and hypotheses about the mechanism (s) controlling densification. Acta Mater, 2007, 55(10): 3493 DOI: 10.1016/j.actamat.2007.01.048
    [20]
    陈曦, 杨刚, 杨屹, 等. 多物理场耦合烧结纯铁粉的动力学及机制. 材料热处理学报, 2014, 35(2): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201402005.htm

    Chen X, Yang G, Yang Y, et al. Sintering dynamics and mechanism of multi-physics fields coupling sintering for pure iron powder. Trans Mater Heat Treat, 2014, 35(2): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201402005.htm
    [21]
    Kondo T, Kuramoto T, Kodera Y, et al. Enhanced growth of Mo2C formed in Mo-C diffusion couple by pulsed DC current. J Jpn Soc Powder Powder Metall, 2008, 55(9): 643 DOI: 10.2497/jjspm.55.643
    [22]
    Garay J E, Anselmi-Tamburini U, Munir Z A. Enhanced growth of intermetallic phases in the Ni-Ti system by current effects. Acta Mater, 2003, 51(15): 4487 DOI: 10.1016/S1359-6454(03)00284-2
    [23]
    Biswas S, Schwen D, Tomar V. Implementation of a phase field model for simulating evolution of two powder particles representing microstructural changes during sintering. J Mater Sci, 2018, 53: 5799 DOI: 10.1007/s10853-017-1846-3
    [24]
    Sherief H H, Hamza F A, Saleh H A. The theory of generalized thermoelastic diffusion. Int J Eng Sci, 2004, 42(5-6): 591 DOI: 10.1016/j.ijengsci.2003.05.001
    [25]
    Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution. Calphad, 2008, 32(2): 268 DOI: 10.1016/j.calphad.2007.11.003
    [26]
    Kuang Z B. Theory of Electroelasticity. Shanghai: Shanghai Jiao Tong University Press, 2014
    [27]
    Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach. Acta Mater, 2006, 54(4): 953 DOI: 10.1016/j.actamat.2005.10.032
    [28]
    Manière C, Pavia A, Durand L, et al. Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process. J Eur Ceram Soc, 2016, 36(3): 741 DOI: 10.1016/j.jeurceramsoc.2015.10.033
    [29]
    Bothara M G, Atre S V, Park S J, et al. Sintering behavior of nanocrystalline silicon carbide using a plasma pressure compaction system: master sintering curve analysis. Metall Mater Trans A, 2010, 41(12): 3252 DOI: 10.1007/s11661-010-0378-0
    [30]
    Mikić B B. Thermal contact conductance; theoretical considerations. Int J Heat Mass Transfer, 1974, 17(2): 205 DOI: 10.1016/0017-9310(74)90082-9
    [31]
    薛忠刚, 赵亚林. 600碳化硅陶瓷的粉末注射成形及其导电特性. 高新技术, 2012, 9: 17 https://www.cnki.com.cn/Article/CJFDTOTAL-XPJX201209017.htm

    Xue Z G, Zhao Y L. Powder injection molding and conductive properties of 600 SiC ceramics, New Technol New Prod China, 2012, 9: 17 https://www.cnki.com.cn/Article/CJFDTOTAL-XPJX201209017.htm
    [32]
    Kuczynski G C. Self-diffusion in sintering of metallic particles. Trans AIME, 1949, 85: 169 DOI: 10.1007/978-94-009-0741-6_33
    [33]
    施剑林. 固相烧结-I气孔显微结构模型及其热力学稳定性, 致密化方程. 硅酸盐学报, 1997, 25(5): 499 DOI: 10.3321/j.issn:0454-5648.1997.05.001

    Shi J L. Solid state sintering I-pore microstructural model and thermodynamic stability, densification equations, J Chin Ceram Soc, 1997, 25(5): 499 DOI: 10.3321/j.issn:0454-5648.1997.05.001
    [34]
    Jana D C, Sundararajan G, Chattopadhyay K. Effective activation energy for the solid-state sintering of silicon carbide ceramics. Metall Mater Trans A, 2018, 49(11): 5599 DOI: 10.1007/s11661-018-4884-9
  • Cited by

    Periodical cited type(1)

    1. 李静. 计算机仿真在粉末冶金过程的应用及研究进展. 粉末冶金技术. 2021(04): 366-372 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (526) PDF downloads (52) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return