AdvancedSearch
LI Jing. Application and research progress of computer simulation used in powder metallurgy process[J]. Powder Metallurgy Technology, 2021, 39(4): 366-372. DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001
Citation: LI Jing. Application and research progress of computer simulation used in powder metallurgy process[J]. Powder Metallurgy Technology, 2021, 39(4): 366-372. DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001

Application and research progress of computer simulation used in powder metallurgy process

More Information
  • Corresponding author:

    LI Jing, E-mail: 54045973@qq.com

  • Received Date: June 03, 2021
  • Available Online: July 14, 2021
  • With the quantity production of the powder metallurgy parts with the excellent comprehensive performance and complex shape, the computer simulation technology is widely used in powder metallurgy process to reduce the product cost, improve product quality, and shorten the development cycle. Several simulation software (Abaqus, Deform, Ansys, Comsol, and MSC.Marc) were introduced in this paper, which are widely used in powder metallurgy field at present. The advantages and disadvantages of the simulation software were compared. The application and selection for the simulation software in the actual production practice were also discussed. The expectation and development of the computer simulation software in powder metallurgy field in the future were put forward.
  • [1]
    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Powder Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
    [2]
    彭景光, 李德凯, 陈迪, 等. 有限元分析在铁基粉末冶金中的应用比较. 粉末冶金技术, 2016, 34(6): 461 DOI: 10.3969/j.issn.1001-3784.2016.06.012

    Peng J G, Li D K, Chen D, et al. Comparison the characteristics of the finite element analysis software by the application in iron-based powder metallurgy industry. Powder Metall Technol, 2016, 34(6): 461 DOI: 10.3969/j.issn.1001-3784.2016.06.012
    [3]
    曲选辉. 主编寄语. 粉末冶金技术, 2021, 39(1): 3

    Qu X H. Comments of Editor-in-Chief. Powder Metall Technol, 2021, 39(1): 3
    [4]
    蒋煜. 粉末冶金过程的计算机仿真[学位论文]. 兰州: 兰州理工大学, 2019

    Jiang Y. Computer Simulation of Powder Metallurgy Process [Dissertation]. Lanzhou: Lanzhou University of Technology, 2019
    [5]
    马长勇. 真空感应熔炼电磁场的数值模拟[学位论文]. 沈阳: 东北大学, 2013

    Ma C Y. Numerical Simulation of Electromagnetic Field in Vacuum Induction Melting [Dissertation]. Shenyang: Northeastern University, 2013
    [6]
    欧阳鸿武, 王琼, 刘卓民. 紧耦合气雾化流场结构突变过程的数值模拟. 粉末冶金材料科学与工程, 2010, 15(2): 96 DOI: 10.3969/j.issn.1673-0224.2010.02.002

    Ouyang H W, Wang Q, Liu Z M. Numerical study on abrupt change of flow field in close-coupled gas atomization. Mater Sci Eng Powder Metall, 2010, 15(2): 96 DOI: 10.3969/j.issn.1673-0224.2010.02.002
    [7]
    夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 41

    Xia M, Wang P, Zhang X H, et al. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys Sin, 2018, 67(17): 41
    [8]
    Zhou R, Zhang L H, He B Y, et al. Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker-Prager Cap model. Trans Nonferrous Met Soc China, 2013, 23(8): 2374 DOI: 10.1016/S1003-6326(13)62744-2
    [9]
    邓正华, 尹海清, 李万全, 等. 基于逆向设计思想的低速重载轴承用铜基粉末合金的设计. 粉末冶金技术, 2020, 38(2): 83

    Deng Z H, Yin H Q, Li W Q, et al. Design of Cu-based powder alloys used for low speed and heavy bearing with inverse design methodology. Powder Metall Technol, 2020, 38(2): 83
    [10]
    Lee D J, Jung J M, Latypov M I, et al. Three-dimensional real structure-based finite element analysis of mechanical behavior for porous titanium manufactured by a space holder method. Comput Mater Sci, 2015, 100: 2 DOI: 10.1016/j.commatsci.2014.10.020
    [11]
    杨栋林, 段柏华, 王德志. 纯钼的多向锻造数值模拟及实验研究. 粉末冶金技术, 2021, 39(3): 216

    Yang D L, Duan B H, Wang D Z. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum. Powder Metall Technol, 2021, 39(3): 216
    [12]
    杨兆伟, 郭顺生, 孙康岭. DEFORM–3D仿真软件在连杆锻造过程中的应用. 现代制造工程, 2010, 4(8): 93 DOI: 10.3969/j.issn.1671-3133.2010.08.024

    Yang Z W, Guo S S, Sun K L. An application for forging of connecting rod based on DEFORM–3D. Mod Manuf Eng, 2010, 4(8): 93 DOI: 10.3969/j.issn.1671-3133.2010.08.024
    [13]
    尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49

    You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49
    [14]
    毛华杰, 沈小燕. 粉末冶金件表面滚压塑性变形强化过程的数值模拟. 热加工工艺, 2020, 39(11): 110

    Mao H J, Shen X Y. Numerical simulation of powder metallurgy components strengthened by surface rolling. Hot Working Technol, 2020, 39(11): 110
    [15]
    张京. 硬质合金刀片压坯密度分布与烧结变形的研究[学位论文]. 长沙: 中南大学, 2014

    Zhang J. Study on the Compact Density and Sintering Deformation of Carbide Inserts [Dissertation]. Changsha: Central South University, 2014
    [16]
    郎利辉, 王刚, 布国亮, 等. 钛合金粉末热等静压数值模拟及性能研究. 粉末冶金工业, 2015, 25(3): 1

    Lang L H, Wang G, Bu G L, et al. Study of numerical simulation and mechanical properties of hot isostatic pressed titanium alloy powder. Powder Metall Ind, 2015, 25(3): 1
    [17]
    喻思, 郎利辉, 王刚, 等. 热等静压成形2A12铝合金粉末的数值模拟研究. 粉末冶金工业, 2016, 26(2): 17

    Yu S, Lang L H, Wang G, et al. Research on numerical simulation of 2A12 aluminum alloy manufactured by hot isostatic pressing. Powder Metall Ind, 2016, 26(2): 17
    [18]
    Song Y, Li Y Y, Zhou Z Y, et al. Improved model and 3D simulation of densification process for iron powder. Trans Nonferrous Met Soc China, 2010, 20(8): 1470 DOI: 10.1016/S1003-6326(09)60323-X
    [19]
    谭树林, 张晓敏, 赵志鹏, 等. 电流辅助烧结过程的多物理场耦合体系模拟. 粉末冶金技术, 2020, 38(6): 414

    Tan S L, Zhang X M, Zhao Z P, et al. System simulation of multi-physical field coupling in electric current-assisted sintering. Powder Metall Technol, 2020, 38(6): 414
    [20]
    王东, 杨溢. 大型离散元软件EDEM的功能特点. 科技成果纵横, 2009, 4(3): 75 DOI: 10.3969/j.issn.1005-5096.2009.03.034

    Wang D, Yang Y. Functional characteristics of large-scalediscrete element software EDEM. Perspect Sci Technol Achiev, 2009, 4(3): 75 DOI: 10.3969/j.issn.1005-5096.2009.03.034
    [21]
    张辉, 张永震. 颗粒力学仿真软件EDEM简要介绍. CAD/CAM与制造业信息化, 2008, 4(12): 48

    Zhang H, Zhang Y Z. Brief introduction of particle mechanics simulation software EDEM. CAD/CAM Manuf Inform, 2008, 4(12): 48
    [22]
    赵艳波, 马麟, 刘波, 等. 基于离散元法的纯铁粉振动填充密度分析. 粉末冶金技术, 2020, 38(6): 429

    Zhao Y B, Ma L, Liu Bo, et al. Analysis on vibration packing density of pure iron powders based on discrete element method. Powder Metall Technol, 2020, 38(6): 429
    [23]
    刘义伦, 曾洋. 不同成型工艺下钕铁硼模压成型过程的力学行为分析. 粉末冶金技术, 2020, 38(4): 262

    Liu Y L, Zeng Y. Mechanical behavior analysis on the compression molding process of NdFeB by different molding technology. Powder Metall Technol, 2020, 38(4): 262
  • Related Articles

    [1]FENG Xiaowei, SI Anheng, FENG Bo, LI Daren. Fabrication, microstructure, and properties of W–Cu graded composites[J]. Powder Metallurgy Technology, 2024, 42(3): 283-289. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020002
    [2]FU Qianqian, TONG Yanpeng. Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying[J]. Powder Metallurgy Technology, 2023, 41(4): 378-384. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010013
    [3]YU Chen-xu. Fabrication, microstructure, and properties of W–Re/graphite composites[J]. Powder Metallurgy Technology, 2021, 39(5): 417-422. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030024
    [4]CAO Yang, ZHANG Peng-lin, NIU Xian-ming, HU Chun-Lian, CHEN Kai-wang. Research on thermal barrier and thermal shock resistance of NiCr−mullite composite ceramic coating[J]. Powder Metallurgy Technology, 2021, 39(2): 135-140. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120004
    [5]WANG Da-feng, MA Bing, MA Liang-chao, CHEN Dong-gao, LIU Hong-wei, ZHANG Ying-ying, ZHANG Long, DAI Yu, WU Jin-ming, GAO Feng. Effect of WC grain size on the microstructure and mechanical properties of HVOF-sprayed WC-10Co4Cr coatings[J]. Powder Metallurgy Technology, 2019, 37(6): 434-443. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.006
    [6]YOU Li, YANG Fang, SHI Tao, QIN Qian, SUI Yan-li, GUO Zhi-meng. Study on microstructure and mechanical properties of TiC-TiB 2 composite coatings on Al matrix by self-propagating high-temperature synthesis[J]. Powder Metallurgy Technology, 2019, 37(6): 428-433, 443. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.005
    [7]Li Wensheng, Li Yaming, Wang Dafeng, Liu Yi, Zhang Jie. Microstructure and properties of composite coating on Ag/Cu electrical contact by thermal spraying[J]. Powder Metallurgy Technology, 2012, 30(3): 187-191. DOI: 10.3969/j.issn.1001-3784.2012.03.006
    [8]Wang Zhenting, Chen Huahui. Microstructure and wear-resistant properties of induction clad micro-nanostructured composite coating[J]. Powder Metallurgy Technology, 2006, 24(1): 32-35. DOI: 10.3321/j.issn:1001-3784.2006.01.007
    [9]Yi Maozhong, He Jiawen. POWDER, SPRAY PROCESS OF ABRADABLE SEAL COATINGS AND ITS BASIC PROPERTIES[J]. Powder Metallurgy Technology, 1999, 17(1): 29-35.
    [10]Gao Jiacheng, Zhang Yaping, Sheng Shixiong, Xie Longhuai, Wang Xuejun. NEW PROCESS OF FLAM SPRAYING FOR CERAMIC—BASED COMPOSITE COATING WITH HEAT RESISTANCE[J]. Powder Metallurgy Technology, 1993, 11(1): 33-36.

Catalog

    Article Metrics

    Article views (837) PDF downloads (202) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return