AdvancedSearch
MA Yue-peng, LI Hui, HAO Bai-chuan, YAN Hong-yan, WANG Le. Research progress and preparation of nanometer zinc ferrite used in anode materials of lithium ion batteries[J]. Powder Metallurgy Technology, 2021, 39(4): 350-357. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080004
Citation: MA Yue-peng, LI Hui, HAO Bai-chuan, YAN Hong-yan, WANG Le. Research progress and preparation of nanometer zinc ferrite used in anode materials of lithium ion batteries[J]. Powder Metallurgy Technology, 2021, 39(4): 350-357. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080004

Research progress and preparation of nanometer zinc ferrite used in anode materials of lithium ion batteries

More Information
  • Corresponding author:

    LI Hui, E-mail: lh@ncst.edu.cn

  • Received Date: August 18, 2019
  • Available Online: March 30, 2021
  • Zinc ferrite (ZnFe2O4) is used as a new anode material for the lithium ion batteries due to its excellent performance. However, ZnFe2O4 has the poor electrical conductivity and the serious volume effects during the charging and discharging, which results in the low cycle stability, fast capacity decay, and poor rate performance, limiting its application. Several methods for preparing the nano-ZnFe2O4 and ZnFe2O4 composites were introduced in this paper. The morphology and microstructure of the nano-scale ZnFe2O4 were studied by scanning electron microscope (SEM). The electrochemical performance of the products produced by the hydrothermal method, solvothermal method, electrospinning technology, co-precipitation method, and solid-phase reaction method were analyzed, and the real reasons that limited the ZnFe2O4 development were summarized.
  • [1]
    姚金环, 张玉芳, 丘雪萍, 等. 改进锂离子电池负极材料ZnFe2O4电化学性能的研究进展. 现代化工, 2016, 36(12): 33

    Yao J H, Zhang Y F, Qiu X P, et al. Research progress in improving electrochemical performance of zinc ferrite as anode material for lithium ion batteries. Mod Chem Ind, 2016, 36(12): 33
    [2]
    Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries. Energy Environ Sci, 2009, 2(6): 638 DOI: 10.1039/b904116h
    [3]
    Yan J, Xia B J, Su Y C, et al. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochim Acta, 2008, 53(24): 7069 DOI: 10.1016/j.electacta.2008.05.032
    [4]
    廖丽霞, 王明, 方涛, 等. ZnFe2O4锂离子电池负极材料的制备及电化学性能研究. 无机材料学报, 2016, 31(1): 34 DOI: 10.15541/jim20150272

    Liao L X, Wang M, Fang T, et al. Synthesis and characterization of ZnFe2O4 anode for lithium ion battery. J Inorg Mater, 2016, 31(1): 34 DOI: 10.15541/jim20150272
    [5]
    杨天博. 锂离子电池负极材料ZnM2O4(M= Mn, Fe)的合成、改性与电化学性能研究[学位论文]. 长春: 吉林大学, 2017

    Yang T B. Synthesis and Modification of ZnM2O4 (M=Mn, Fe) as Anode Materials for Lithium-Ion Batteries [Dissertation]. Changchun: Jilin University, 2017
    [6]
    Poizot P, Baudrin E, Laruelle S, et al. Low temperature synthesis and electrochemical performance of crystallized FeVO4·1.1H2O. Solid State Ionics, 2000, 138(1-2): 31 DOI: 10.1016/S0167-2738(00)00784-0
    [7]
    曹慧. 碳包覆ZnFe2O4 基锂离子电池负极材料的制备、表征及其储锂性能[学位论文]. 马鞍山: 安徽工业大学, 2017

    Cao H. Synthesis, Characterization and Li-Storage Performance of Carbon-Coated ZnFe2O4-Based Anode Materials for Li-Ion Batteries [Dissertation]. Ma’ anshan: Anhui University of Technology, 2017
    [8]
    Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22(35): E170 DOI: 10.1002/adma.201000717
    [9]
    王锦成, 陈月辉, 陈琼云. 纳米材料在化学纤维中的应用现状. 印染, 2004, 30(7): 45 DOI: 10.3321/j.issn:1000-4017.2004.07.015

    Wang J C, Chen Y H, Chen Q Y. Latest development of nanometer particles in chemical fibers. China Dyeing Finish, 2004, 30(7): 45 DOI: 10.3321/j.issn:1000-4017.2004.07.015
    [10]
    韩黎君. 水热法合成纳米铁酸锌及其光催化性能研究[学位论文]. 广州: 华南理工大学, 2012

    Han L J. Synthesis of Nano-Zinc Ferrite via Hydrothermal Synthesis Route and Study on their Photocatalytic Properties [Dissertation]. Guangzhou: South China University of Technology, 2012
    [11]
    阎鑫, 胡小玲, 岳红, 等. 纳米铁酸锌的水热合成. 化学通报, 2002, 65(9): 623 DOI: 10.3969/j.issn.0441-3776.2002.09.013

    Yan X, Hu X L, Yue H, et al. Hydrothermal synthesis of nano zinc ferrite. Chemistry, 2002, 65(9): 623 DOI: 10.3969/j.issn.0441-3776.2002.09.013
    [12]
    Xing Z, Ju Z C, Yang J, et al. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode materialfor Li-ion batteries. Nano Res, 2012, 5(7): 477 DOI: 10.1007/s12274-012-0233-2
    [13]
    Xie J, Song W T, Cao G S, et al. One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Adv, 2014, 4(15): 7703 DOI: 10.1039/c3ra46904b
    [14]
    Xu J, Gu S, Fan L, et al. Electrospun lotus root-like CoMoO4@graphene nanofibers as high-performance anode for lithium ion batteries. Electrochim Acta, 2016, 196: 125 DOI: 10.1016/j.electacta.2016.01.228
    [15]
    Guo X, Lu X, Fang X, et al. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun, 2010, 12(6): 847 DOI: 10.1016/j.elecom.2010.04.003
    [16]
    孙翔. 溶剂热法制备三维分级TiO2纳米棒微球及其光催化性能研究[学位论文]. 济南: 山东大学, 2018

    Sun X. Preparation of Three-Dimensional TiO2 Microspheres by Solvothermal Method and the Photocatalytic Activities [Dissertation]. Jinan: Shandong University, 2018
    [17]
    Gao J, Mu X, Li J J, et al. Preparation and characterization of porous spherical Li4Ti5O12/C anode material for lithium ion batteries. J Inorg Mater, 2012, 27(3): 253
    [18]
    韩臻臻, 贾慧敏, 杨树华, 等. ZnFe2O4纳米粒子-石墨烯复合材料制备和超级电容器性能. 中国粉体技术, 2018, 24(1): 86

    Han Z Z, Jia H M, Yang S H, et al. Synthesis and supercapacitor properties of ZnFe2O4 nanoparticles-graphene composites. China Powder Sci Technol, 2018, 24(1): 86
    [19]
    Xia H, Qian Y, Fu Y, et al. Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci, 2013, 17: 67 DOI: 10.1016/j.solidstatesciences.2012.12.001
    [20]
    王艳芝. 静电纺丝技术发展简史及应用. 合成纤维工业, 2018, 41(4): 52 DOI: 10.3969/j.issn.1001-0041.2018.04.013

    Wang Y Z. A brief history of electrospinning technology development and application. China Synth Fiber Ind, 2018, 41(4): 52 DOI: 10.3969/j.issn.1001-0041.2018.04.013
    [21]
    费雅倩. 铁酸锌复合纳米纤维材料的制备和电化学性能研究[学位论文]. 无锡: 江南大学, 2017

    Fei Y Q. Preparation and Electrochemical Properties of ZnFe2O4 Composite Nanofibers [Dissertation]. Wuxi: Jiangnan University, 2017
    [22]
    Zhang M, Sun Z H, Zhang T F, et al. Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon, 2016, 102: 32 DOI: 10.1016/j.carbon.2016.02.032
    [23]
    Xiao Y L, Zai J T, Tao L Q, et al. MnFe2O4–graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phy Chem Chem Phy, 2013, 15(11): 3939 DOI: 10.1039/c3cp50220a
    [24]
    Teh P F, Sharma Y, Pramana S S, et al. Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem, 2011, 21(38): 14999 DOI: 10.1039/c1jm12088c
    [25]
    Zhong X B, Yang Z Z, Wang H Y, et al. A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J Power Sources, 2016, 306: 718 DOI: 10.1016/j.jpowsour.2015.12.102
    [26]
    叶琳, 段月琴, 袁志好. 共沉淀法制备的铁酸锌纳米材料的晶化与晶粒生长行为. 天津理工大学学报, 2007, 23(6): 36 DOI: 10.3969/j.issn.1673-095X.2007.06.012

    Ye L, Duan Y Q, Yuan Z H. Preparation of nanosized zinc ferrite by co-precipitation and crystallization behavior. J Tianjin Univ Technol, 2007, 23(6): 36 DOI: 10.3969/j.issn.1673-095X.2007.06.012
    [27]
    Jia H, Kloepsch R, He X, et al. Nanostructured ZnFe2O4 as anode material for lithium ion batteries: Ionic liquid-assisted synthesis and performance evaluation with special emphasis on comparative metal dissolution. Acta Chim Slov, 2016, 63(3): 470
    [28]
    Ding Y, Yang Y, Shao H. High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim Acta, 2011, 56(25): 9433 DOI: 10.1016/j.electacta.2011.08.031
    [29]
    白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 778

    Bai Y, Ding L H, Zhang W F. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Phys Sin, 2011, 60(5): 778
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (596) PDF downloads (52) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return