AdvancedSearch
LI Xiang, ZENG Ke-li, HE Peng-jiang, LUO Hao, ZHU Jie, SONG Xin-qiang. Effect of tightly coupled gas atomization parameters on the properties of metal powders used for 3D printing[J]. Powder Metallurgy Technology, 2021, 39(2): 172-176. DOI: 10.19591/j.cnki.cn11-1974/tf.2019100003
Citation: LI Xiang, ZENG Ke-li, HE Peng-jiang, LUO Hao, ZHU Jie, SONG Xin-qiang. Effect of tightly coupled gas atomization parameters on the properties of metal powders used for 3D printing[J]. Powder Metallurgy Technology, 2021, 39(2): 172-176. DOI: 10.19591/j.cnki.cn11-1974/tf.2019100003

Effect of tightly coupled gas atomization parameters on the properties of metal powders used for 3D printing

More Information
  • Corresponding author:

    ZENG Ke-li, E-mail: 13928867032@139.com

  • Received Date: October 10, 2019
  • Available Online: March 26, 2021
  • Inconel 625 metal powders used for 3D printing were prepared by vacuum inert gas atomization (VIGA), using the independently developed and designed tightly coupled gas atomization device. By adjusting the atomization parameters, the effects of the inner diameter of delivery tubes on the particle size distribution, surface morphology, oxygen content (mass fraction), and flowability of the metal powders were investigated. The results show that, the high quality Inconel 625 metal powders can be obtained by the tightly coupled gas atomization device, showing a wide range of particle size distribution and a high powder yield with good sphericity and fewer satellite spheres, the yield of the metal powders smaller than 53 μm can reach more than 50%. With the increase in the inner diameter of the delivery tubes, the yield of the metal powders reduces, and the oxygen content (mass fraction) decreases obviously. The prepared metal powders used in the different 3D printing devices can meet the performance requirements for the powder materials.
  • [1]
    姚妮娜, 彭雄厚. 3D打印金属粉末的制备方法. 四川有色金属, 2013, 12(4): 48

    Yao N N, Peng X H. The preparation method of metal powder for 3D printing. Sichuan Nonferrous Met, 2013, 12(4): 48
    [2]
    吴文恒, 吴凯琦, 肖逸凡, 等. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001

    Wu W H, Wu K Q, Xiao Y F, et al. Effects of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001
    [3]
    Lawley A. Atomization: the Production of Metal Powders. Princeton: Metal Powder Industry, 1992
    [4]
    陈欣. 紧耦合气雾化流场结构和雾化机理研究[学位论文]. 长沙: 中南大学, 2007

    Chen X. Study on Structure and Atomization Mechanism of Tightly Coupled Aerosol Flow Field [Dissertation]. Changsha: Central South University, 2007
    [5]
    Karapatis P. A sub-process approach of selective laser sintering. EPFL, 2002, 7(4): 11
    [6]
    许天旱, 王党会. 雾化器导液管内径对无铅焊锡粉末形貌及粒度分布的影响. 粉末冶金技术, 2009, 27(3): 197

    Xu T H, Wang D H. Effect of inner diameter of liquid guide tube of atomizer on morphology and particle size distribution of lead-free solder powder. Powder Metall Technol, 2009, 27(3): 197
    [7]
    张维涛. 双级耦合雾化法制备合金粉末的研究[学位论文]. 兰州: 兰州理工大学, 2013

    Zhang W T. Research on Preparation of Alloy Powder by Two-Stage Coupling Atomization [Dissertation]. Lanzhou: Lanzhou University of Technology, 2013
    [8]
    Schulz G. Some applications of ultrafine, gas atomized metal powder beyond classical powder metallurgy//Proceedings of 2000 Powder Metallurgy World Congress. Kyoto, 2000: 475
    [9]
    Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J, 2011, 17(3): 195 DOI: 10.1108/13552541111124770
    [10]
    黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 1997

    Huang P Y. Theory of Power Metallurgy. Beijing: Metallurgical Industry Press, 1997
    [11]
    Yuan W H, Che Z H, Huang P Y. Preparation of heat-resistant aluminum alloy pipe blanks by multi-layer spray deposition. Trans Nonferrous Met Soc China, 2000, 10(4): 460
    [12]
    Ünal A. Effect of processing variables on particle size in gas atomization of rapidly solidified aluminum powders. Mater Sci Technol, 1987, 3(12): 1029 DOI: 10.1179/mst.1987.3.12.1029
    [13]
    Ünal A. Influence of nozzle geometry in gas atomisation of rapidly solidified aluminium alloys. Mater Sci Technol, 1988, 4(10): 909 DOI: 10.1179/mst.1988.4.10.909
    [14]
    沈英俊, 季道馨, 徐永利, 等. 若干雾化参数的理论简析. 粉末冶金技术, 1995, 13(1): 21

    Shen Y J, Ji D X, Xu Y L, et al. Theoretical analysis of several atomization parameters. Powder Metall Technol, 1995, 13(1): 21
    [15]
    郭景杰, 傅恒志. 合金熔体及其处理. 北京: 机械工业出版社, 2005

    Guo J J, Fu H Z. Alloy Melt and its Treatment. Beijing: Machine Press, 2005
    [16]
    Loria E A. Superalloy 718: Metallurgy and applications//Proceedings of the International Symposium. Pittsburgh, 1989: 7
    [17]
    Rizzo F J, Radavich J. Proceedings of the second international symposium on superalloy 718, 625, 706 and various derivatives//Annual Meeting and Exhibition of the Minerals, Metals and Materials Society. Warrendale, 1991: 297
  • Related Articles

    [1]CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
    [2]LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
    [3]LI Chang, CHEN Lei-lei, QU Zong-hong, LIU Kui-sheng, LAI Yun-jin, LIANG Shu-jin. Numerical simulation study of effect of die structure on the extrusion deformation of FGH4096 alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 277-283. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080014
    [4]LIANG Yuan-long, JIANG Guo-sheng. Finite element simulation of tungsten-coated diamond/copper composites[J]. Powder Metallurgy Technology, 2019, 37(4): 283-287. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
    [5]ZHANG Ming, LIU Guo-quan, HU Ben-fu, Geng Xiao-xiao, WANG Hao. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
    [6]LI Yu, SHEN Wei, ZHAO Peng, PU Yu-ping. Finite element analysis for the yield strength of copper foam[J]. Powder Metallurgy Technology, 2017, 35(1): 3-9. DOI: 10.3969/j.issn.1001-3784.2017.01.001
    [7]Qiao Changchun, Wu Youzhi, Meng Junhu. Finite element analysis on the demolding process of micro-powder injection molding[J]. Powder Metallurgy Technology, 2015, 33(6): 437-444. DOI: 10.3969/j.issn.1001-3784.2015.06.007
    [8]Ma Yunzhu, Wang Jianning, Liu Wensheng, Liu Yuanbiao, Zhang Jiajia. Finite element simulation and optimization of forming process for tungsten-based alloys screw extrusion based on rigid-plastic model[J]. Powder Metallurgy Technology, 2015, 33(1): 42-48.
    [9]Wang Deguang, Wu Yucheng, Jiao Minghua, Yu Jianwei, Xie Ting, Yin Yanguo. Finite element simulation to influence of compacting mode on PM product properties[J]. Powder Metallurgy Technology, 2008, (2): 88-93.
    [10]Finite Element Analysis Model for P/M Driven Gears Deburring[J]. Powder Metallurgy Technology, 2001, 19(5): 293-296. DOI: 10.3321/j.issn:1001-3784.2001.05.011

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return