Citation: | SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008 |
[1] |
范景莲, 李鹏飞, 刘涛, 等. 高性能细晶钨及钨合金的研究进展. 中国钨业, 2015, 30(2): 41
Fan J L, Li P F, Liu T, et al. Advances in fine grained tungsten and tungsten alloys with high performance. China Tungsten Ind, 2015, 30(2): 41
|
[2] |
王庆相, 范志康. W和W/Ti合金靶材的应用及其制备技术. 粉末冶金技术, 2009, 27(1): 52
Wang Q X, Fan Z K. Application and manufacturing technology of tungsten and tungsten-titanium targets. Powder Metall Technol, 2009, 27(1): 52
|
[3] |
王迎春, 李树奎, 王富耻, 等. 放电等离子烧结温度对钨合金的组织及动态力学性能的影响. 稀有金属材料与工程, 2010, 39(10): 1807
Wang Y C, Li S K, Wang F C, et al. Effects of spark plasma sintering temperature on microstructure and dynamic mechanical properties of 93W–4.9Ni–2.1Fe alloy. Rare Met Mater Eng, 2010, 39(10): 1807
|
[4] |
Park M, Schuh C A. Accelerated sintering in phase-separating nanostructured alloys. Nat Commun, 2015, 6: 6858 DOI: 10.1038/ncomms7858
|
[5] |
杨俊逸, 李小强, 郭亮, 等. 放电等离子烧结(SPS)技术与新材料研究. 材料导报, 2006, 20(6): 94 DOI: 10.3321/j.issn:1005-023X.2006.06.025
Yang J Y, Li X Q, Guo L, et al. Spark plasma sintering technology and its application in preparation of advanced materials. Mater Rev, 2006, 20(6): 94 DOI: 10.3321/j.issn:1005-023X.2006.06.025
|
[6] |
白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术. 粉末冶金技术, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013
Bai L, Ge C C, Shen W P. Spark plasma sintering technology. Powder Metall Technol, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013
|
[7] |
张朝晖. 放电等离子烧结技术及其在钛基复合材料制备中的应用. 北京: 国防工业出版社, 2018
Zhang Z H. Spark Plasma Sintering and Its Application in Preparation of Titanium Matrix Composites. Beijing: National Defense Industry Press, 2018
|
[8] |
范景莲. 钨合金及其制备新技术. 北京: 冶金工业出版社, 2006
Fan J L. Tungsten Alloy and Its New Preparation Technology. Beijing: Metallurgical Industry Press, 2006
|
[9] |
谈军, 周张健, 屈丹丹, 等. 放电等离子烧结制备超细晶粒W–TiC复合材料. 稀有金属材料与工程, 2011, 40(11): 1990
Tan J, Zhou Z J, Qu D D, et al. Fabrication of ultra fine grained W–TiC composites by spark plasma sintering. Rare Met Mater Eng, 2011, 40(11): 1990
|
[10] |
王庆相, 范志康, 杨怡. 制备方法对W–10%Ti合金组织性能的影响. 材料研究学报, 2009, 23(3): 293 DOI: 10.3321/j.issn:1005-3093.2009.03.012
Wang Q X, Fan Z K, Yang Y. Effect of preparation methods on microstructure and properties of W–10%Ti alloy. Chin J Mater Res, 2009, 23(3): 293 DOI: 10.3321/j.issn:1005-3093.2009.03.012
|
[11] |
张久兴, 刘科高, 周美玲. 放电等离子烧结技术的发展和应用. 粉末冶金技术, 2002, 20(3): 128
Zhang J X, Liu K G, Zhou M L. Development and application of spark plasma sintering. Powder Metall Technol, 2002, 20(3): 128
|
[12] |
罗荣梅. 一种95W细晶钨合金动态力学性能. 辽宁化工, 2015, 44(7): 776
Luo R M. Dynamic mechanics properties of fine-grain tungsten heavy alloy. Liaoning Chem Ind, 2015, 44(7): 776
|
[13] |
金钟铃, 林涛, 邵慧萍, 等. 球磨对制备钨钛封垫的原料粉末的影响. 稀有金属, 2016, 40(7): 679
Jin Z L, Lin T, Shao H P, et al. Raw material powder by ball-milling in preparation of W–Ti gasket. Chin J Rare Met, 2016, 40(7): 679
|
[14] |
于洋, 任朝媛, 张文丛, 等. 难变形材料热静液挤压复合精密塑性成形工艺. 精密成形工程, 2018, 10(2): 18 DOI: 10.3969/j.issn.1674-6457.2018.02.004
Yu Y, Ren C Y, Zhang W C, et al. Hard-deformation material fabricated by hot hydrostatic extrusion and compound precision plastic forming technologies. J Netshape Form Eng, 2018, 10(2): 18 DOI: 10.3969/j.issn.1674-6457.2018.02.004
|
[15] |
Xie Z M, Liu R, Fang Q F, et al. Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method. Plasma Sci Technol, 2015, 17(12): 1066 DOI: 10.1088/1009-0630/17/12/15
|
[16] |
Tao J Q, Shi X L. Properties, phases and microstructure of microwave sintered W–20Cu composites from spray pyrolysis-continuous reduction processed powders. J Wuhan Univ Technol Mater Sci, 2012, 27(1): 38 DOI: 10.1007/s11595-012-0403-9
|
[17] |
Elsebaie O S, Jaansalu K M. Effect of titanium and chromium on the microstructure of tungsten-manganese alloys prepared by mechanical alloying//TMS 144th Annual Meeting and Exhibition. Orlando, 2015: 1533
|
[18] |
Vilémová M, Illková K, Lukáč F, et al. Microstructure and phase stability of W–Cr alloy prepared by spark plasma sintering. Fusion Eng Des, 2018, 127: 173 DOI: 10.1016/j.fusengdes.2018.01.012
|
[19] |
Wang S, Luo L M, Zhao M L, et al. Microstructure and properties of TiN-reinforced W–Ti alloys prepared by spark plasma sintering. Powder Technol, 2016, 294: 301 DOI: 10.1016/j.powtec.2016.03.001
|
[20] |
Chookajorn T, Schuh C A. Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys Rev B, 2014, 89(6): 064102 DOI: 10.1103/PhysRevB.89.064102
|
[21] |
Lee S K, Lee D N. Calculation of phase diagrams using partial phase diagram data. Calphad, 1986, 10(1): 61 DOI: 10.1016/0364-5916(86)90010-6
|
[22] |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys. Science, 2012, 337(6097): 951 DOI: 10.1126/science.1224737
|
[23] |
Murdoch H A, Schuh C A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J Mater Res, 2013, 28(16): 2154 DOI: 10.1557/jmr.2013.211
|
[24] |
Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of The Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plwnum Publishers, 1999
|
[25] |
Skriver H L, Rosengaard N M. Surface energy and work function of elemental metals. Phys Rev B, 1992, 46(11): 7157 DOI: 10.1103/PhysRevB.46.7157
|
[26] |
de Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals: Transition Metal Alloys. Amsterdam: North-Holland Publishing Company, 1988
|
[27] |
Jones H. The surface energy of solid metals. Met Sci J, 1971, 5(1): 15 DOI: 10.1179/030634571790439342
|
[1] | YANG Guang, LI Gemin, WEI Bangzheng, XU Dang, CHEN Pengqi, CHENG Jigui. Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology[J]. Powder Metallurgy Technology, 2025, 43(1): 12-19. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001 |
[2] | ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010 |
[3] | La Peiqing, Han Shaobo, Lu Xuefeng, Ju Qian, Wei Yupeng. Study of the influence of different stoichometry of Mg in starting mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1): 3-8,13. DOI: 10.3969/j.issn.1001-3784.2013.01.001 |
[4] | Tian Ding, Zhao Yanmin, Wu Xiaolin, Wang Xiuhui, Gao Hong, Zhai Yuchun. The preparation techniques of lanthanum aluminate ultra-fine powders[J]. Powder Metallurgy Technology, 2009, 27(5): 377-380. |
[5] | Sun Weimin, Jin Shouri, Yu Ying. PREPARATION AND CHARACTERIZATION OF Ni-TiN ULTRAFINE POWDER[J]. Powder Metallurgy Technology, 2000, 18(3): 183-186. |
[6] | Sun Weimin, Jin Shouri. Continuous Production of Ultrafine Iron Powder[J]. Powder Metallurgy Technology, 1997, 15(3): 199-202. |
[7] | Zheng Jie, Lü Zhenhe, Gan Zhangyan. DEVELOPMENT TO SUPERIOR QUALITY ULTRAFINE PALLADIUM POWDER[J]. Powder Metallurgy Technology, 1995, 13(2): 112-115. |
[8] | Zhong Junhui. MANUFACTURE PROCESS OF NANOMETER POWDER[J]. Powder Metallurgy Technology, 1995, 13(1): 48-56. |
[9] | Ge Rongde, Zhao Tiancong, Liu Zhihong, Chen Huiguang, Zhang Duomo. APPLICATION OF A NEW AGGLOMERATION PARAMETER IN CHARACTERIZING THE STATE OF AGGLOMERATION OF ULTRAFINE ZIRCONIA POWDERS[J]. Powder Metallurgy Technology, 1994, 12(2): 87-90. |
[10] | Xu Mingxia, Guo Ruisong, Yang Zhengfang, Shi Guoshun. SURFACE MODIFICATION OF ULTRAFINE CERAMIC POWDERS[J]. Powder Metallurgy Technology, 1993, 11(1): 19-24. |
1. |
荣智峥,高阳,张朔,马佳俊,孙德建. 球磨时间及热处理工艺对6061铝合金组织与性能的影响. 材料工程. 2023(10): 136-145 .
![]() | |
2. |
韩国强,王玮玮,李晓艳. 粉末烧结对Mg-Sc合金微观组织和力学性能的影响. 粉末冶金技术. 2023(06): 548-553 .
![]() | |
3. |
余聪,陈乐平,周全. 稀土元素对铝合金组织与性能影响的研究进展. 特种铸造及有色合金. 2021(02): 241-246 .
![]() | |
4. |
郭江,李荣,牛海云. 铈对6063铝合金组织和综合性能的影响. 中国稀土学报. 2021(02): 275-281 .
![]() |