Citation: | SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008 |
[1] |
范景莲, 李鹏飞, 刘涛, 等. 高性能细晶钨及钨合金的研究进展. 中国钨业, 2015, 30(2): 41
Fan J L, Li P F, Liu T, et al. Advances in fine grained tungsten and tungsten alloys with high performance. China Tungsten Ind, 2015, 30(2): 41
|
[2] |
王庆相, 范志康. W和W/Ti合金靶材的应用及其制备技术. 粉末冶金技术, 2009, 27(1): 52
Wang Q X, Fan Z K. Application and manufacturing technology of tungsten and tungsten-titanium targets. Powder Metall Technol, 2009, 27(1): 52
|
[3] |
王迎春, 李树奎, 王富耻, 等. 放电等离子烧结温度对钨合金的组织及动态力学性能的影响. 稀有金属材料与工程, 2010, 39(10): 1807
Wang Y C, Li S K, Wang F C, et al. Effects of spark plasma sintering temperature on microstructure and dynamic mechanical properties of 93W–4.9Ni–2.1Fe alloy. Rare Met Mater Eng, 2010, 39(10): 1807
|
[4] |
Park M, Schuh C A. Accelerated sintering in phase-separating nanostructured alloys. Nat Commun, 2015, 6: 6858 DOI: 10.1038/ncomms7858
|
[5] |
杨俊逸, 李小强, 郭亮, 等. 放电等离子烧结(SPS)技术与新材料研究. 材料导报, 2006, 20(6): 94 DOI: 10.3321/j.issn:1005-023X.2006.06.025
Yang J Y, Li X Q, Guo L, et al. Spark plasma sintering technology and its application in preparation of advanced materials. Mater Rev, 2006, 20(6): 94 DOI: 10.3321/j.issn:1005-023X.2006.06.025
|
[6] |
白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术. 粉末冶金技术, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013
Bai L, Ge C C, Shen W P. Spark plasma sintering technology. Powder Metall Technol, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013
|
[7] |
张朝晖. 放电等离子烧结技术及其在钛基复合材料制备中的应用. 北京: 国防工业出版社, 2018
Zhang Z H. Spark Plasma Sintering and Its Application in Preparation of Titanium Matrix Composites. Beijing: National Defense Industry Press, 2018
|
[8] |
范景莲. 钨合金及其制备新技术. 北京: 冶金工业出版社, 2006
Fan J L. Tungsten Alloy and Its New Preparation Technology. Beijing: Metallurgical Industry Press, 2006
|
[9] |
谈军, 周张健, 屈丹丹, 等. 放电等离子烧结制备超细晶粒W–TiC复合材料. 稀有金属材料与工程, 2011, 40(11): 1990
Tan J, Zhou Z J, Qu D D, et al. Fabrication of ultra fine grained W–TiC composites by spark plasma sintering. Rare Met Mater Eng, 2011, 40(11): 1990
|
[10] |
王庆相, 范志康, 杨怡. 制备方法对W–10%Ti合金组织性能的影响. 材料研究学报, 2009, 23(3): 293 DOI: 10.3321/j.issn:1005-3093.2009.03.012
Wang Q X, Fan Z K, Yang Y. Effect of preparation methods on microstructure and properties of W–10%Ti alloy. Chin J Mater Res, 2009, 23(3): 293 DOI: 10.3321/j.issn:1005-3093.2009.03.012
|
[11] |
张久兴, 刘科高, 周美玲. 放电等离子烧结技术的发展和应用. 粉末冶金技术, 2002, 20(3): 128
Zhang J X, Liu K G, Zhou M L. Development and application of spark plasma sintering. Powder Metall Technol, 2002, 20(3): 128
|
[12] |
罗荣梅. 一种95W细晶钨合金动态力学性能. 辽宁化工, 2015, 44(7): 776
Luo R M. Dynamic mechanics properties of fine-grain tungsten heavy alloy. Liaoning Chem Ind, 2015, 44(7): 776
|
[13] |
金钟铃, 林涛, 邵慧萍, 等. 球磨对制备钨钛封垫的原料粉末的影响. 稀有金属, 2016, 40(7): 679
Jin Z L, Lin T, Shao H P, et al. Raw material powder by ball-milling in preparation of W–Ti gasket. Chin J Rare Met, 2016, 40(7): 679
|
[14] |
于洋, 任朝媛, 张文丛, 等. 难变形材料热静液挤压复合精密塑性成形工艺. 精密成形工程, 2018, 10(2): 18 DOI: 10.3969/j.issn.1674-6457.2018.02.004
Yu Y, Ren C Y, Zhang W C, et al. Hard-deformation material fabricated by hot hydrostatic extrusion and compound precision plastic forming technologies. J Netshape Form Eng, 2018, 10(2): 18 DOI: 10.3969/j.issn.1674-6457.2018.02.004
|
[15] |
Xie Z M, Liu R, Fang Q F, et al. Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method. Plasma Sci Technol, 2015, 17(12): 1066 DOI: 10.1088/1009-0630/17/12/15
|
[16] |
Tao J Q, Shi X L. Properties, phases and microstructure of microwave sintered W–20Cu composites from spray pyrolysis-continuous reduction processed powders. J Wuhan Univ Technol Mater Sci, 2012, 27(1): 38 DOI: 10.1007/s11595-012-0403-9
|
[17] |
Elsebaie O S, Jaansalu K M. Effect of titanium and chromium on the microstructure of tungsten-manganese alloys prepared by mechanical alloying//TMS 144th Annual Meeting and Exhibition. Orlando, 2015: 1533
|
[18] |
Vilémová M, Illková K, Lukáč F, et al. Microstructure and phase stability of W–Cr alloy prepared by spark plasma sintering. Fusion Eng Des, 2018, 127: 173 DOI: 10.1016/j.fusengdes.2018.01.012
|
[19] |
Wang S, Luo L M, Zhao M L, et al. Microstructure and properties of TiN-reinforced W–Ti alloys prepared by spark plasma sintering. Powder Technol, 2016, 294: 301 DOI: 10.1016/j.powtec.2016.03.001
|
[20] |
Chookajorn T, Schuh C A. Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys Rev B, 2014, 89(6): 064102 DOI: 10.1103/PhysRevB.89.064102
|
[21] |
Lee S K, Lee D N. Calculation of phase diagrams using partial phase diagram data. Calphad, 1986, 10(1): 61 DOI: 10.1016/0364-5916(86)90010-6
|
[22] |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys. Science, 2012, 337(6097): 951 DOI: 10.1126/science.1224737
|
[23] |
Murdoch H A, Schuh C A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J Mater Res, 2013, 28(16): 2154 DOI: 10.1557/jmr.2013.211
|
[24] |
Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of The Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plwnum Publishers, 1999
|
[25] |
Skriver H L, Rosengaard N M. Surface energy and work function of elemental metals. Phys Rev B, 1992, 46(11): 7157 DOI: 10.1103/PhysRevB.46.7157
|
[26] |
de Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals: Transition Metal Alloys. Amsterdam: North-Holland Publishing Company, 1988
|
[27] |
Jones H. The surface energy of solid metals. Met Sci J, 1971, 5(1): 15 DOI: 10.1179/030634571790439342
|