AdvancedSearch
SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
Citation: SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008

Ultrafine grained W–Ti alloys prepared by spark plasma sintering

More Information
  • Corresponding author:

    KONG Jian, E-mail: kongjian68@126.com

  • Received Date: December 21, 2019
  • Available Online: March 26, 2021
  • The W–Ti alloys with the Ti atomic fraction in the range of 15%~30% were prepared by spark plasma sintering in this paper. The phase composition, microstructure, and formation mechanism of the ultrafine grained W–Ti alloys with the different Ti content were studied. The results show that, the W–Ti alloys containing β1(Ti,W) phase and β2(Ti,W) phase can be prepared by spark plasma sintering at 1100 ℃ in 5 min. Under the combined action of Ti segregation and rapid sintering, the grain size of the centimeter-sized bulk samples is up to sub-micron scale, and the properties of the W–Ti alloys first increase and then decrease with the increase of Ti content. When the Ti atomic fraction is 25%, the relative density of the samples is (98.5±0.1) %, the average size of W grains is about (340±20) nm, and the hardness and compressive strength are HV (860±2) and (2600±10) MPa, respectively.
  • [1]
    范景莲, 李鹏飞, 刘涛, 等. 高性能细晶钨及钨合金的研究进展. 中国钨业, 2015, 30(2): 41

    Fan J L, Li P F, Liu T, et al. Advances in fine grained tungsten and tungsten alloys with high performance. China Tungsten Ind, 2015, 30(2): 41
    [2]
    王庆相, 范志康. W和W/Ti合金靶材的应用及其制备技术. 粉末冶金技术, 2009, 27(1): 52

    Wang Q X, Fan Z K. Application and manufacturing technology of tungsten and tungsten-titanium targets. Powder Metall Technol, 2009, 27(1): 52
    [3]
    王迎春, 李树奎, 王富耻, 等. 放电等离子烧结温度对钨合金的组织及动态力学性能的影响. 稀有金属材料与工程, 2010, 39(10): 1807

    Wang Y C, Li S K, Wang F C, et al. Effects of spark plasma sintering temperature on microstructure and dynamic mechanical properties of 93W–4.9Ni–2.1Fe alloy. Rare Met Mater Eng, 2010, 39(10): 1807
    [4]
    Park M, Schuh C A. Accelerated sintering in phase-separating nanostructured alloys. Nat Commun, 2015, 6: 6858 DOI: 10.1038/ncomms7858
    [5]
    杨俊逸, 李小强, 郭亮, 等. 放电等离子烧结(SPS)技术与新材料研究. 材料导报, 2006, 20(6): 94 DOI: 10.3321/j.issn:1005-023X.2006.06.025

    Yang J Y, Li X Q, Guo L, et al. Spark plasma sintering technology and its application in preparation of advanced materials. Mater Rev, 2006, 20(6): 94 DOI: 10.3321/j.issn:1005-023X.2006.06.025
    [6]
    白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术. 粉末冶金技术, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013

    Bai L, Ge C C, Shen W P. Spark plasma sintering technology. Powder Metall Technol, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013
    [7]
    张朝晖. 放电等离子烧结技术及其在钛基复合材料制备中的应用. 北京: 国防工业出版社, 2018

    Zhang Z H. Spark Plasma Sintering and Its Application in Preparation of Titanium Matrix Composites. Beijing: National Defense Industry Press, 2018
    [8]
    范景莲. 钨合金及其制备新技术. 北京: 冶金工业出版社, 2006

    Fan J L. Tungsten Alloy and Its New Preparation Technology. Beijing: Metallurgical Industry Press, 2006
    [9]
    谈军, 周张健, 屈丹丹, 等. 放电等离子烧结制备超细晶粒W–TiC复合材料. 稀有金属材料与工程, 2011, 40(11): 1990

    Tan J, Zhou Z J, Qu D D, et al. Fabrication of ultra fine grained W–TiC composites by spark plasma sintering. Rare Met Mater Eng, 2011, 40(11): 1990
    [10]
    王庆相, 范志康, 杨怡. 制备方法对W–10%Ti合金组织性能的影响. 材料研究学报, 2009, 23(3): 293 DOI: 10.3321/j.issn:1005-3093.2009.03.012

    Wang Q X, Fan Z K, Yang Y. Effect of preparation methods on microstructure and properties of W–10%Ti alloy. Chin J Mater Res, 2009, 23(3): 293 DOI: 10.3321/j.issn:1005-3093.2009.03.012
    [11]
    张久兴, 刘科高, 周美玲. 放电等离子烧结技术的发展和应用. 粉末冶金技术, 2002, 20(3): 128

    Zhang J X, Liu K G, Zhou M L. Development and application of spark plasma sintering. Powder Metall Technol, 2002, 20(3): 128
    [12]
    罗荣梅. 一种95W细晶钨合金动态力学性能. 辽宁化工, 2015, 44(7): 776

    Luo R M. Dynamic mechanics properties of fine-grain tungsten heavy alloy. Liaoning Chem Ind, 2015, 44(7): 776
    [13]
    金钟铃, 林涛, 邵慧萍, 等. 球磨对制备钨钛封垫的原料粉末的影响. 稀有金属, 2016, 40(7): 679

    Jin Z L, Lin T, Shao H P, et al. Raw material powder by ball-milling in preparation of W–Ti gasket. Chin J Rare Met, 2016, 40(7): 679
    [14]
    于洋, 任朝媛, 张文丛, 等. 难变形材料热静液挤压复合精密塑性成形工艺. 精密成形工程, 2018, 10(2): 18 DOI: 10.3969/j.issn.1674-6457.2018.02.004

    Yu Y, Ren C Y, Zhang W C, et al. Hard-deformation material fabricated by hot hydrostatic extrusion and compound precision plastic forming technologies. J Netshape Form Eng, 2018, 10(2): 18 DOI: 10.3969/j.issn.1674-6457.2018.02.004
    [15]
    Xie Z M, Liu R, Fang Q F, et al. Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method. Plasma Sci Technol, 2015, 17(12): 1066 DOI: 10.1088/1009-0630/17/12/15
    [16]
    Tao J Q, Shi X L. Properties, phases and microstructure of microwave sintered W–20Cu composites from spray pyrolysis-continuous reduction processed powders. J Wuhan Univ Technol Mater Sci, 2012, 27(1): 38 DOI: 10.1007/s11595-012-0403-9
    [17]
    Elsebaie O S, Jaansalu K M. Effect of titanium and chromium on the microstructure of tungsten-manganese alloys prepared by mechanical alloying//TMS 144th Annual Meeting and Exhibition. Orlando, 2015: 1533
    [18]
    Vilémová M, Illková K, Lukáč F, et al. Microstructure and phase stability of W–Cr alloy prepared by spark plasma sintering. Fusion Eng Des, 2018, 127: 173 DOI: 10.1016/j.fusengdes.2018.01.012
    [19]
    Wang S, Luo L M, Zhao M L, et al. Microstructure and properties of TiN-reinforced W–Ti alloys prepared by spark plasma sintering. Powder Technol, 2016, 294: 301 DOI: 10.1016/j.powtec.2016.03.001
    [20]
    Chookajorn T, Schuh C A. Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys Rev B, 2014, 89(6): 064102 DOI: 10.1103/PhysRevB.89.064102
    [21]
    Lee S K, Lee D N. Calculation of phase diagrams using partial phase diagram data. Calphad, 1986, 10(1): 61 DOI: 10.1016/0364-5916(86)90010-6
    [22]
    Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys. Science, 2012, 337(6097): 951 DOI: 10.1126/science.1224737
    [23]
    Murdoch H A, Schuh C A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J Mater Res, 2013, 28(16): 2154 DOI: 10.1557/jmr.2013.211
    [24]
    Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of The Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plwnum Publishers, 1999
    [25]
    Skriver H L, Rosengaard N M. Surface energy and work function of elemental metals. Phys Rev B, 1992, 46(11): 7157 DOI: 10.1103/PhysRevB.46.7157
    [26]
    de Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals: Transition Metal Alloys. Amsterdam: North-Holland Publishing Company, 1988
    [27]
    Jones H. The surface energy of solid metals. Met Sci J, 1971, 5(1): 15 DOI: 10.1179/030634571790439342
  • Related Articles

    [1]SHU chen, XU Qiang, LIU Yi-bo, YANG Zhiwei, KOU Shengzhong, CAO Rui. Investigation on microstructure and performance of sintered matrix and diamond saw blades welded by laser under different transition layer component[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110005
    [2]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]LIU Yiran, LI Lei, LI Xiaodong. Effect of shot peening on surface mechanical properties of selective laser melting TC4 titanium alloy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010008
    [5]LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
    [6]CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009
    [7]LIANG Jia-miao, WANG Li-min, HE Wei, TANG Chao, WU Xi-mao, WANG Jun. Effect of milling time on microstructures and hardness of nanocrystalline Al-7Si-0.3Mg alloy powders[J]. Powder Metallurgy Technology, 2019, 37(5): 373-381,391. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.009
    [8]WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
    [9]WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
    [10]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008

Catalog

    Article Metrics

    Article views (725) PDF downloads (62) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return