AdvancedSearch
FU Qian-qian, TONG Yan-peng. Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings[J]. Powder Metallurgy Technology, 2021, 39(2): 122-126. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110011
Citation: FU Qian-qian, TONG Yan-peng. Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings[J]. Powder Metallurgy Technology, 2021, 39(2): 122-126. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110011

Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings

More Information
  • Corresponding author:

    FU Qian-qian, E-mail: fuqianqian716@163.com

  • Received Date: November 22, 2019
  • Available Online: March 26, 2021
  • Yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs) in micron size were deposited by supersonic atmospheric plasma spraying (SAPS) and conventional atmospheric plasma spraying (APS). During the spraying, a commercially available online diagnostic system (SprayWatch-2i) was used to monitor the velocity and surface temperature of the in-flight particles for each operating condition. The microstructures of the as-sprayed coatings in two spraying conditions were characterized by the scanning electron microscopy and the image analysis technique. The fracture toughness and elastic modulus were measured by the indentation method. The power law of area-perimeter which originated from the fractal theory was employed to quantitatively characterize the irregular morphology of the pores in two spraying conditions. The relationship of fractal dimension and fracture toughness was also investigated. The results show that, the fractal dimension can characterize the irregular morphology of pores. The coatings deposited by SAPS and APS show the good fractal character. The fractal dimension of the coatings deposited by SAPS is 1.12 times than that of the coatings deposited by APS, showing the more complex pore structure and the higher fracture toughness.
  • [1]
    Schulz U, Leyensa C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp Sci Technol, 2003, 7(1): 73 DOI: 10.1016/S1270-9638(02)00003-2
    [2]
    Perepezko J H. The hotter the engine, the better. Science, 2009, 326(5956): 1068 DOI: 10.1126/science.1179327
    [3]
    Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280 DOI: 10.1126/science.1068609
    [4]
    纪箴, 王聪瑜, 夏洋, 等. 氧化钇稳定氧化锆耐刻蚀涂层的研究现状. 粉末冶金技术, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011

    Ji Z, Wang C Y, Xia Y, et al. The research of YSZ ceramic coating’ s preparation techniques on the surface of etching machine process chamber. Powder Metall Technol, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011
    [5]
    Kim S S, Liu Y F, Kagawa Y. Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout metho. Acta Mater, 2007, 55(11): 3771 DOI: 10.1016/j.actamat.2007.02.027
    [6]
    何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62

    He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62
    [7]
    Han Z H, Xu B S, Wang H J, et al. A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2−Y2O3−ZrO2 graded thermal barrier coatings. Surf Coat Technol, 2007, 201(9-11): 5253 DOI: 10.1016/j.surfcoat.2006.07.176
    [8]
    Khan A N, Lu J. Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates. Surf Coat Technol, 2007, 201(8): 4653 DOI: 10.1016/j.surfcoat.2006.10.022
    [9]
    Zhang X C, Xu B S, Wu Y X, et al. Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates. Appl Surf Sci, 2008, 254(13): 3879 DOI: 10.1016/j.apsusc.2007.12.023
    [10]
    Bai Y, Zhao L, Qu Y M, et al. Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloys Compd, 2015, 644: 873 DOI: 10.1016/j.jallcom.2015.05.068
    [11]
    Liu K, Ostadhassan M, Kong L. Fractal and multifractal characteristics of pore throats in the bakken shale. Transp Porous Media, 2019, 126: 579 DOI: 10.1007/s11242-018-1130-2
    [12]
    Lung C W, Mu Z Q. Fractal dimension measured with perimeter-area relation and toughness of materials. Phys Rev B: Condens Matter, 1989, 38(16): 11781
    [13]
    Li J F, Ding C X. Fractal character of circumferences of polishing-induced pull outs of plasma sprayed Cr3C2−NiCr coatings. Thin Solid Films, 2000, 376(1-2): 179 DOI: 10.1016/S0040-6090(00)01202-5
    [14]
    陈书赢, 王海斗, 马国政, 等. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 101

    Chen S Y, Wang H D, Ma G Z, et al. Fractal and statistical properties of the geometrical structure of natural pores within plasma sprayed coatings. Acta Phys Sin, 2015, 64(24): 101
    [15]
    Krakhmalev P V, Strom E, Sundberg M, et al. Microstructure, hardness and indentation toughness of C40 Mo(Si, Al)2/ZrO2 composites prepared by SPS of MA powders. Scr Mater, 2003, 48(6): 725 DOI: 10.1016/S1359-6462(02)00536-5
    [16]
    Chyou Y P, Pfender E. Behavior of particulates in thermal plasma flows. Plasma Chem Plasma Process, 1989, 9(1): 45 DOI: 10.1007/BF01015826
    [17]
    White F M. Viscous Fluid Flow. New York: McGraw-Hill, 1974
    [18]
    Bai Y, Zhao L, Wang Y, et al. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloys Compd, 2015, 632: 794 DOI: 10.1016/j.jallcom.2015.01.265
    [19]
    谭超, 魏正英, 魏培, 等. 超声速等离子喷涂颗粒加热熔化与细化过程分析. 推进技术, 2016, 37(5): 930

    Tan C, Wei Z Y, Wei P, et al. Analysis of melting and refining process of supersonic plasma spraying particles. J Propul Technol, 2016, 37(5): 930
    [20]
    Celli A, Tucci A, Esposito L, et al. Fractal analysis of cracks in alumina–zirconia composites. J Eur Ceram Soc, 2003, 23(3): 469 DOI: 10.1016/S0955-2219(02)00148-6
  • Related Articles

    [1]DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013
    [2]YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009
    [3]Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011
    [4]Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116.
    [5]Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272.
    [6]Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219.
    [7]Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43.
    [8]Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171.
    [9]Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15.
    [10]Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15.
  • Cited by

    Periodical cited type(5)

    1. 宋志健,刘世凯,王嘉琳,韩碧波,孙亚光. CeO_2-ZrO_2纳米复合粉体的原位自组装法制备及表征. 中国稀土学报. 2024(03): 509-514 .
    2. 苏生,艾素芬,邱家稳,宋馨,田岱,马彬,曹亚茹. 深空探测RTPV高温多层隔热技术研究. 深空探测学报(中英文). 2024(05): 462-468 .
    3. 林冰涛,张保红,唐亮亮,熊宁,张丹华,张蕾. 等离子喷涂涂层抗烧蚀性能及微观结构. 粉末冶金技术. 2023(03): 282-288 . 本站查看
    4. 胡晓蕾,郭丹,刘建明,卢晓亮,彭浩然,黄兆晖. 孔隙率对YSZ涂层性能的影响. 热喷涂技术. 2023(01): 45-51+37 .
    5. 席芳星月,胡婷婷,付雪松,陈国清. Ti-15-3合金表面氧化物陶瓷复合涂层的制备与耐蚀性能. 陶瓷学报. 2021(05): 825-833 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (709) PDF downloads (48) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return