AdvancedSearch
FU Qian-qian, TONG Yan-peng. Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings[J]. Powder Metallurgy Technology, 2021, 39(2): 122-126. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110011
Citation: FU Qian-qian, TONG Yan-peng. Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings[J]. Powder Metallurgy Technology, 2021, 39(2): 122-126. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110011

Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings

More Information
  • Corresponding author:

    FU Qian-qian, E-mail: fuqianqian716@163.com

  • Received Date: November 22, 2019
  • Available Online: March 26, 2021
  • Yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs) in micron size were deposited by supersonic atmospheric plasma spraying (SAPS) and conventional atmospheric plasma spraying (APS). During the spraying, a commercially available online diagnostic system (SprayWatch-2i) was used to monitor the velocity and surface temperature of the in-flight particles for each operating condition. The microstructures of the as-sprayed coatings in two spraying conditions were characterized by the scanning electron microscopy and the image analysis technique. The fracture toughness and elastic modulus were measured by the indentation method. The power law of area-perimeter which originated from the fractal theory was employed to quantitatively characterize the irregular morphology of the pores in two spraying conditions. The relationship of fractal dimension and fracture toughness was also investigated. The results show that, the fractal dimension can characterize the irregular morphology of pores. The coatings deposited by SAPS and APS show the good fractal character. The fractal dimension of the coatings deposited by SAPS is 1.12 times than that of the coatings deposited by APS, showing the more complex pore structure and the higher fracture toughness.
  • [1]
    Schulz U, Leyensa C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp Sci Technol, 2003, 7(1): 73 DOI: 10.1016/S1270-9638(02)00003-2
    [2]
    Perepezko J H. The hotter the engine, the better. Science, 2009, 326(5956): 1068 DOI: 10.1126/science.1179327
    [3]
    Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280 DOI: 10.1126/science.1068609
    [4]
    纪箴, 王聪瑜, 夏洋, 等. 氧化钇稳定氧化锆耐刻蚀涂层的研究现状. 粉末冶金技术, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011

    Ji Z, Wang C Y, Xia Y, et al. The research of YSZ ceramic coating’ s preparation techniques on the surface of etching machine process chamber. Powder Metall Technol, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011
    [5]
    Kim S S, Liu Y F, Kagawa Y. Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout metho. Acta Mater, 2007, 55(11): 3771 DOI: 10.1016/j.actamat.2007.02.027
    [6]
    何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62

    He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62
    [7]
    Han Z H, Xu B S, Wang H J, et al. A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2−Y2O3−ZrO2 graded thermal barrier coatings. Surf Coat Technol, 2007, 201(9-11): 5253 DOI: 10.1016/j.surfcoat.2006.07.176
    [8]
    Khan A N, Lu J. Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates. Surf Coat Technol, 2007, 201(8): 4653 DOI: 10.1016/j.surfcoat.2006.10.022
    [9]
    Zhang X C, Xu B S, Wu Y X, et al. Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates. Appl Surf Sci, 2008, 254(13): 3879 DOI: 10.1016/j.apsusc.2007.12.023
    [10]
    Bai Y, Zhao L, Qu Y M, et al. Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloys Compd, 2015, 644: 873 DOI: 10.1016/j.jallcom.2015.05.068
    [11]
    Liu K, Ostadhassan M, Kong L. Fractal and multifractal characteristics of pore throats in the bakken shale. Transp Porous Media, 2019, 126: 579 DOI: 10.1007/s11242-018-1130-2
    [12]
    Lung C W, Mu Z Q. Fractal dimension measured with perimeter-area relation and toughness of materials. Phys Rev B: Condens Matter, 1989, 38(16): 11781
    [13]
    Li J F, Ding C X. Fractal character of circumferences of polishing-induced pull outs of plasma sprayed Cr3C2−NiCr coatings. Thin Solid Films, 2000, 376(1-2): 179 DOI: 10.1016/S0040-6090(00)01202-5
    [14]
    陈书赢, 王海斗, 马国政, 等. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 101

    Chen S Y, Wang H D, Ma G Z, et al. Fractal and statistical properties of the geometrical structure of natural pores within plasma sprayed coatings. Acta Phys Sin, 2015, 64(24): 101
    [15]
    Krakhmalev P V, Strom E, Sundberg M, et al. Microstructure, hardness and indentation toughness of C40 Mo(Si, Al)2/ZrO2 composites prepared by SPS of MA powders. Scr Mater, 2003, 48(6): 725 DOI: 10.1016/S1359-6462(02)00536-5
    [16]
    Chyou Y P, Pfender E. Behavior of particulates in thermal plasma flows. Plasma Chem Plasma Process, 1989, 9(1): 45 DOI: 10.1007/BF01015826
    [17]
    White F M. Viscous Fluid Flow. New York: McGraw-Hill, 1974
    [18]
    Bai Y, Zhao L, Wang Y, et al. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloys Compd, 2015, 632: 794 DOI: 10.1016/j.jallcom.2015.01.265
    [19]
    谭超, 魏正英, 魏培, 等. 超声速等离子喷涂颗粒加热熔化与细化过程分析. 推进技术, 2016, 37(5): 930

    Tan C, Wei Z Y, Wei P, et al. Analysis of melting and refining process of supersonic plasma spraying particles. J Propul Technol, 2016, 37(5): 930
    [20]
    Celli A, Tucci A, Esposito L, et al. Fractal analysis of cracks in alumina–zirconia composites. J Eur Ceram Soc, 2003, 23(3): 469 DOI: 10.1016/S0955-2219(02)00148-6
  • Related Articles

    [1]SHU chen, XU Qiang, LIU Yi-bo, YANG Zhiwei, KOU Shengzhong, CAO Rui. Investigation on microstructure and performance of sintered matrix and diamond saw blades welded by laser under different transition layer component[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110005
    [2]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]LIU Yiran, LI Lei, LI Xiaodong. Effect of shot peening on surface mechanical properties of selective laser melting TC4 titanium alloy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010008
    [5]LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
    [6]CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009
    [7]LIANG Jia-miao, WANG Li-min, HE Wei, TANG Chao, WU Xi-mao, WANG Jun. Effect of milling time on microstructures and hardness of nanocrystalline Al-7Si-0.3Mg alloy powders[J]. Powder Metallurgy Technology, 2019, 37(5): 373-381,391. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.009
    [8]WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
    [9]WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
    [10]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return