Citation: | FU Qian-qian, TONG Yan-peng. Fractal character and fracture toughness of plasma sprayed yttria-stabilized zirconia coatings[J]. Powder Metallurgy Technology, 2021, 39(2): 122-126. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110011 |
[1] |
Schulz U, Leyensa C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp Sci Technol, 2003, 7(1): 73 DOI: 10.1016/S1270-9638(02)00003-2
|
[2] |
Perepezko J H. The hotter the engine, the better. Science, 2009, 326(5956): 1068 DOI: 10.1126/science.1179327
|
[3] |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280 DOI: 10.1126/science.1068609
|
[4] |
纪箴, 王聪瑜, 夏洋, 等. 氧化钇稳定氧化锆耐刻蚀涂层的研究现状. 粉末冶金技术, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011
Ji Z, Wang C Y, Xia Y, et al. The research of YSZ ceramic coating’ s preparation techniques on the surface of etching machine process chamber. Powder Metall Technol, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011
|
[5] |
Kim S S, Liu Y F, Kagawa Y. Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout metho. Acta Mater, 2007, 55(11): 3771 DOI: 10.1016/j.actamat.2007.02.027
|
[6] |
何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62
He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62
|
[7] |
Han Z H, Xu B S, Wang H J, et al. A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2−Y2O3−ZrO2 graded thermal barrier coatings. Surf Coat Technol, 2007, 201(9-11): 5253 DOI: 10.1016/j.surfcoat.2006.07.176
|
[8] |
Khan A N, Lu J. Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates. Surf Coat Technol, 2007, 201(8): 4653 DOI: 10.1016/j.surfcoat.2006.10.022
|
[9] |
Zhang X C, Xu B S, Wu Y X, et al. Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates. Appl Surf Sci, 2008, 254(13): 3879 DOI: 10.1016/j.apsusc.2007.12.023
|
[10] |
Bai Y, Zhao L, Qu Y M, et al. Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloys Compd, 2015, 644: 873 DOI: 10.1016/j.jallcom.2015.05.068
|
[11] |
Liu K, Ostadhassan M, Kong L. Fractal and multifractal characteristics of pore throats in the bakken shale. Transp Porous Media, 2019, 126: 579 DOI: 10.1007/s11242-018-1130-2
|
[12] |
Lung C W, Mu Z Q. Fractal dimension measured with perimeter-area relation and toughness of materials. Phys Rev B: Condens Matter, 1989, 38(16): 11781
|
[13] |
Li J F, Ding C X. Fractal character of circumferences of polishing-induced pull outs of plasma sprayed Cr3C2−NiCr coatings. Thin Solid Films, 2000, 376(1-2): 179 DOI: 10.1016/S0040-6090(00)01202-5
|
[14] |
陈书赢, 王海斗, 马国政, 等. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 101
Chen S Y, Wang H D, Ma G Z, et al. Fractal and statistical properties of the geometrical structure of natural pores within plasma sprayed coatings. Acta Phys Sin, 2015, 64(24): 101
|
[15] |
Krakhmalev P V, Strom E, Sundberg M, et al. Microstructure, hardness and indentation toughness of C40 Mo(Si, Al)2/ZrO2 composites prepared by SPS of MA powders. Scr Mater, 2003, 48(6): 725 DOI: 10.1016/S1359-6462(02)00536-5
|
[16] |
Chyou Y P, Pfender E. Behavior of particulates in thermal plasma flows. Plasma Chem Plasma Process, 1989, 9(1): 45 DOI: 10.1007/BF01015826
|
[17] |
White F M. Viscous Fluid Flow. New York: McGraw-Hill, 1974
|
[18] |
Bai Y, Zhao L, Wang Y, et al. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloys Compd, 2015, 632: 794 DOI: 10.1016/j.jallcom.2015.01.265
|
[19] |
谭超, 魏正英, 魏培, 等. 超声速等离子喷涂颗粒加热熔化与细化过程分析. 推进技术, 2016, 37(5): 930
Tan C, Wei Z Y, Wei P, et al. Analysis of melting and refining process of supersonic plasma spraying particles. J Propul Technol, 2016, 37(5): 930
|
[20] |
Celli A, Tucci A, Esposito L, et al. Fractal analysis of cracks in alumina–zirconia composites. J Eur Ceram Soc, 2003, 23(3): 469 DOI: 10.1016/S0955-2219(02)00148-6
|
[1] | DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013 |
[2] | YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009 |
[3] | Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011 |
[4] | Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116. |
[5] | Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272. |
[6] | Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219. |
[7] | Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43. |
[8] | Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171. |
[9] | Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15. |
[10] | Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15. |
1. |
宋志健,刘世凯,王嘉琳,韩碧波,孙亚光. CeO_2-ZrO_2纳米复合粉体的原位自组装法制备及表征. 中国稀土学报. 2024(03): 509-514 .
![]() | |
2. |
苏生,艾素芬,邱家稳,宋馨,田岱,马彬,曹亚茹. 深空探测RTPV高温多层隔热技术研究. 深空探测学报(中英文). 2024(05): 462-468 .
![]() | |
3. |
林冰涛,张保红,唐亮亮,熊宁,张丹华,张蕾. 等离子喷涂涂层抗烧蚀性能及微观结构. 粉末冶金技术. 2023(03): 282-288 .
![]() | |
4. |
胡晓蕾,郭丹,刘建明,卢晓亮,彭浩然,黄兆晖. 孔隙率对YSZ涂层性能的影响. 热喷涂技术. 2023(01): 45-51+37 .
![]() | |
5. |
席芳星月,胡婷婷,付雪松,陈国清. Ti-15-3合金表面氧化物陶瓷复合涂层的制备与耐蚀性能. 陶瓷学报. 2021(05): 825-833 .
![]() |