AdvancedSearch
LI Jian, LI Chang-sheng, DUAN Zhao-yu. Effect of MoS2−Ag−V2O5 on friction and wear properties of nickel-based composites[J]. Powder Metallurgy Technology, 2021, 39(2): 141-146. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120008
Citation: LI Jian, LI Chang-sheng, DUAN Zhao-yu. Effect of MoS2−Ag−V2O5 on friction and wear properties of nickel-based composites[J]. Powder Metallurgy Technology, 2021, 39(2): 141-146. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120008

Effect of MoS2−Ag−V2O5 on friction and wear properties of nickel-based composites

More Information
  • Corresponding author:

    LI Chang-sheng, E-mail: lichangsheng@ujs.edu.cn

  • Received Date: December 15, 2019
  • Available Online: March 26, 2021
  • The nickel-based self-lubricating composites added with the different solid lubrications (MoS2, Ag, and V2O5) were prepared by powder metallurgy sintering. The friction and wear properties of the nickel-based composites were investigated between room temperature and 600 ℃. The phase composition and the wear surface micromorphology were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), and Raman spectroscopy. The results indicate that, the friction coefficients of the nickel-based self-lubricating composites increase firstly and then decrease with the temperature increasing. At room temperature, the friction coefficients of the composites decrease with the increase of Ag content; at 600 ℃, the friction coefficients and wear rates of the composites decrease with the increase of V2O5 content. The composites mainly reduce the friction and wear by MoS2 and Ag at medium and low temperatures; a new lubricating phase of silver molybdates is formed in the friction chemical reaction of the composites at the high temperature, and the lubrication mechanism is the synergistic lubrication effect of silver molybdate and V2O5 at high temperature.
  • [1]
    薛群基, 吕晋军. 高温固体润滑研究的现状及发展趋势. 摩擦学学报, 1999, 19(1): 3

    Xue Q J, Lü J J. Research status and developing trend of solid lubrication at high temperatures. Tribology, 1999, 19(1): 3
    [2]
    Erdemir A. A crystal-chemical approach to lubrication by solid oxides. Tribol Lett, 2000, 8: 97 DOI: 10.1023/A:1019183101329
    [3]
    Godet M. Extrapolation in tribology. Wear, 1982, 77(1): 29 DOI: 10.1016/0043-1648(82)90042-4
    [4]
    Hilton M R, Fleischauer P D. Applications of solid lubricant films in spacecraft. Surf Coat Technol, 1992, 54-55: 435 DOI: 10.1016/S0257-8972(07)80062-4
    [5]
    Murray S F, Calabrese S J. Effect of solid lubricants on low speed sliding behavior of silicon nitride at temperatures to 800 ℃. LubrEng, 1993, 49: 955
    [6]
    Gupta S, Filimonov D, Palanisamy T, et al. Ta2AlC and Cr2AlC Ag-based composites — New solid lubricant materials for use over a wide temperature range against Ni-based superalloys and alumina. Wear, 2007, 262(11-12): 1479 DOI: 10.1016/j.wear.2007.01.028
    [7]
    DellaCorte C. The evaluation of a modified chrome oxide based high temperature solid lubricant coating for foil gas bearings. Tribol Trans, 2000, 43: 257 DOI: 10.1080/10402000008982337
    [8]
    Du L Z, Zhang W T, Zhang W G, et al. Tribological and oxidation behaviors of the plasma sprayed NiCo−CrAlY−Cr2O3−AgVO3 coating. Surf Coat Technol, 2016, 298: 7 DOI: 10.1016/j.surfcoat.2016.04.042
    [9]
    Aouadi S M, Singh D P, Stone D S, et al. Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 ℃. Acta Mater, 2010, 58(16): 5326 DOI: 10.1016/j.actamat.2010.06.006
    [10]
    Aouadi S M, Paudel Y, Simonson W J, et al. Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content. Surf Coat Technol, 2009, 203(10-11): 1304 DOI: 10.1016/j.surfcoat.2008.10.040
    [11]
    Muratore C, Voevodin A A, Hu J J, et al. Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 ℃. Wear, 2006, 261(7-8): 797 DOI: 10.1016/j.wear.2006.01.029
    [12]
    Li J, Xiong D, Wu H, et al. Tribological properties of molybdenized silver-containing nickel base alloy at elevated temperatures. Tribol Int, 2009, 42(11-12): 1722 DOI: 10.1016/j.triboint.2008.12.004
    [13]
    Huang Y C, Ibrahim A M M, Shi X L, et al. Tribological characterization of NiAl self-lubricating composites containing V2O5 nanowires. J Mater Eng Perform, 2016, 25(11): 4941 DOI: 10.1007/s11665-016-2339-2
    [14]
    Franz R, Mitterer C. Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: a review. Surf Coat Technol, 2013, 228: 1 DOI: 10.1016/j.surfcoat.2013.04.034
    [15]
    Voevodin A A, Hu J J, Fitz T A, et al. Tribological properties of adaptive nanocomposite coatings made of yttria stabilized zirconia and gold. Surf Coat Technol, 2001, 146-147: 351 DOI: 10.1016/S0257-8972(01)01396-2
    [16]
    陕钰, 刘峰, 汪建义, 等. NiCrW−Al2O3−SrCO3−Ag金属陶瓷复合材料的高温摩擦学性能研究. 摩擦学学报, 2015, 35(6): 707

    Shan Y, Liu F, Wang J Y, et al. High temperature tribological properties of NiCrW−Al2O3−SrCO3−Ag cement composites. Tribology, 2015, 35(6): 707
    [17]
    Liu E Y, Wang W Z, Gao Y M, et al. Tribological properties of adaptive Ni-based composites with addition of lubricious Ag2MoO4 at elevated temperatures. Tribol Lett, 2012, 47(1): 21 DOI: 10.1007/s11249-012-9958-z
    [18]
    Ouyang J H, Murakami T, Sasaki S. High-temperature tribological properties of a cathodic arc ion-plated (V, Ti)N coating. Wear, 2007, 263(7-12): 1347 DOI: 10.1016/j.wear.2006.12.031
    [19]
    Xiong D S. Lubrication behavior of Ni-Cr-based alloys containing MoS2 at high temperature. Wear, 2001, 251(1-12): 1094 DOI: 10.1016/S0043-1648(01)00803-1
    [20]
    Wu Y, Wang F, Cheng Y, et al. A study of the optimization mechanism of solid lubricant concentration in Ni/MoS2 self-lubricating composite. Wear, 1997, 205(1-2): 64 DOI: 10.1016/S0043-1648(96)07299-7
  • Related Articles

    [1]FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090006
    [2]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [3]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [4]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [9]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
    [10]Wang Fuchi, Wang Yingchun, Huang Guohua, Li Shukui. Effects of Carbon Content on Precipitated Phase and Dynamic Mechanical Properties of W-Ni-Fe Heavy Alloys[J]. Powder Metallurgy Technology, 1998, 16(2): 93-96.
  • Cited by

    Periodical cited type(1)

    1. 顾祥宇,林媛,曲星霖,郭玉玺,张利,李晓峰. 激光功率对激光粉末床熔融成形Fe–Mn–Al–Ni–C轻质钢组织及性能的影响. 粉末冶金技术. 2024(05): 471-480 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (267) PDF downloads (31) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return