Citation: | MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002 |
[1] |
梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展. 材料工程, 2009(12): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200912020.htm
Liang X B, Wei M, Cheng J B, et al. Research progress in advanced materials of high-entropy alloys. J Mater Eng, 2009(12): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200912020.htm
|
[2] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 DOI: 10.1002/adem.200300567
|
[3] |
Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater, 2004, 6(1-2): 74 DOI: 10.1002/adem.200300507/abstract
|
[4] |
李忠丽, 孙宏飞, 高鹏, 等. 新型多主元高熵合金的研究进展. 新技术新工艺, 2010(8): 62 DOI: 10.3969/j.issn.1003-5311.2010.08.020
Li Z L, Sun H F, Gao P, et al. Research and development of thenew multi-principal high elements entropy alloy. New Technol NewProcess, 2010(8): 62 DOI: 10.3969/j.issn.1003-5311.2010.08.020
|
[5] |
朱海云, 孙宏飞, 李业超. 多主元高熵合金的研究现状与发展. 新材料产业, 2008(9): 67 DOI: 10.3969/j.issn.1008-892X.2008.09.015
Zhu H Y, Sun H F, Li Y C. Research status and development of multi-principal high-entropy alloys. Adv Mater Ind, 2008(9): 67 DOI: 10.3969/j.issn.1008-892X.2008.09.015
|
[6] |
张峻嘉. AlxCoCrFeNiTi0.5系高熵合金的微观组织结构及性能[学位论文]. 大连: 大连理工大学, 2013
Zhang J J. The Microstructure and Performance of High-Entropy Alloys AlxCoCrFeNiTi0.5[Dissertation]. Dalian: Dalian University of Technology, 2013
|
[7] |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Nihigh-entropy alloys. Acta Mater, 2013, 61(13): 4887 DOI: 10.1016/j.actamat.2013.04.058
|
[8] |
Zhang Y, Lu Z P, Ma S G, et al. Guidelines in predicting phase formation of high-entropyalloys. Mater Res Soc Commun, 2014, 4(2): 57 http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1179%2F1743284715Y.0000000031&key=10.1557%2Fmrc.2014.11
|
[9] |
Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep, 2013, 3: 1455 DOI: 10.1038/srep01455
|
[10] |
Zhu J M, Fu H M, Zhang H F, et al. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater Sci Eng A, 2010, 527(26): 6975 DOI: 10.1016/j.msea.2010.07.028
|
[11] |
Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci, 2010, 52(10): 3481 DOI: 10.1016/j.corsci.2010.06.025
|
[12] |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59(16): 6308 DOI: 10.1016/j.actamat.2011.06.041
|
[13] |
Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd, 2009, 486(1-2): 427 DOI: 10.1016/j.jallcom.2009.06.182
|
[14] |
Wang X F, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 2007, 15(3): 357 DOI: 10.1016/j.intermet.2006.08.005
|
[15] |
谢红波, 刘贵仲, 郭景杰, 等. Ti对AlFeCrCoCu高熵合金组织及耐磨性能的影响. 稀有金属材料与工程, 2016, 45(1): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201601030.htm
Xie H B, Liu G Z, Guo J J, et al. Effect of Ti addition on the microstructure and wear properties of AlFeCrCoCu high-entropy alloy. Rare Met Mater Eng, 2016, 45(1): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201601030.htm
|
[16] |
于源, 谢发勤, 张铁邦, 等. AlCoCrFeNiTi0.5高熵合金的组织控制和腐蚀性能. 稀有金属材料与工程, 2012, 41(5): 862 DOI: 10.3969/j.issn.1002-185X.2012.05.023
Yu Y, Xie F Q, Zhang T B, et al. Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy. Rare Met Mater Eng, 2012, 41(5): 862 DOI: 10.3969/j.issn.1002-185X.2012.05.023
|
[17] |
张勇, 周云军, 惠希东, 等. 大块金属玻璃及高熵合金的合金化作用. 中国科学(G辑), 2008, 38(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804012.htm
Zhang Y, Zhou Y J, Hui X D, et al. Alloying of bulk metallic glass and high-entropy alloys. Sci China G, 2008, 38(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804012.htm
|
[18] |
牛雪莲. 钢基体腐蚀防护的高熵合金AlxFeCrCoNiCu涂层研究[学位论文]. 大连: 大连理工大学, 2014
Niu X L. Study of Steel Corrosion Protection by High-Entropy Alloy Coatings AlxFeCrCoNiCu[Dissertation]. Dalian: Dalian University of Technology, 2014
|
[19] |
盛洪飞. AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究[学位论文]. 合肥: 中国科学技术大学, 2014
Sheng H F. Processing, Microstructure and Properties of Al xCoCrCuFeNi High Entropy Alloys and Their in-situ Composite[Dissertation]. Hefei: University of Science and Technology of China, 2014
|
[20] |
Cantor B, Chang I T H, Knight P, et al. Microstructural development inequiatomic multicomponent alloys. Mater Sci Eng A, 2004, 375-377: 213 http://www.sciencedirect.com/science/article/pii/s0921509303009936
|
[21] |
董鑫涛, 刘贵仲, 班煜峰, 等. Ti元素对Al1.2FeCrCoNiTix高熵合金微观组织及硬度的影响. 热加工工艺, 2018, 47(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804018.htm
Dong X T, Liu G Z, Ban Y F, et al. Effect of Ti element on microstructure and hardness of Al1.2FeCrCoNiTix high-entropy alloys. Hot Working Technol, 2018, 47(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804018.htm
|
[1] | YANG Guang, LI Gemin, WEI Bangzheng, XU Dang, CHEN Pengqi, CHENG Jigui. Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology[J]. Powder Metallurgy Technology, 2025, 43(1): 12-19. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001 |
[2] | ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010 |
[3] | La Peiqing, Han Shaobo, Lu Xuefeng, Ju Qian, Wei Yupeng. Study of the influence of different stoichometry of Mg in starting mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1): 3-8,13. DOI: 10.3969/j.issn.1001-3784.2013.01.001 |
[4] | Tian Ding, Zhao Yanmin, Wu Xiaolin, Wang Xiuhui, Gao Hong, Zhai Yuchun. The preparation techniques of lanthanum aluminate ultra-fine powders[J]. Powder Metallurgy Technology, 2009, 27(5): 377-380. |
[5] | Sun Weimin, Jin Shouri, Yu Ying. PREPARATION AND CHARACTERIZATION OF Ni-TiN ULTRAFINE POWDER[J]. Powder Metallurgy Technology, 2000, 18(3): 183-186. |
[6] | Sun Weimin, Jin Shouri. Continuous Production of Ultrafine Iron Powder[J]. Powder Metallurgy Technology, 1997, 15(3): 199-202. |
[7] | Zheng Jie, Lü Zhenhe, Gan Zhangyan. DEVELOPMENT TO SUPERIOR QUALITY ULTRAFINE PALLADIUM POWDER[J]. Powder Metallurgy Technology, 1995, 13(2): 112-115. |
[8] | Zhong Junhui. MANUFACTURE PROCESS OF NANOMETER POWDER[J]. Powder Metallurgy Technology, 1995, 13(1): 48-56. |
[9] | Ge Rongde, Zhao Tiancong, Liu Zhihong, Chen Huiguang, Zhang Duomo. APPLICATION OF A NEW AGGLOMERATION PARAMETER IN CHARACTERIZING THE STATE OF AGGLOMERATION OF ULTRAFINE ZIRCONIA POWDERS[J]. Powder Metallurgy Technology, 1994, 12(2): 87-90. |
[10] | Xu Mingxia, Guo Ruisong, Yang Zhengfang, Shi Guoshun. SURFACE MODIFICATION OF ULTRAFINE CERAMIC POWDERS[J]. Powder Metallurgy Technology, 1993, 11(1): 19-24. |
1. |
荣智峥,高阳,张朔,马佳俊,孙德建. 球磨时间及热处理工艺对6061铝合金组织与性能的影响. 材料工程. 2023(10): 136-145 .
![]() | |
2. |
韩国强,王玮玮,李晓艳. 粉末烧结对Mg-Sc合金微观组织和力学性能的影响. 粉末冶金技术. 2023(06): 548-553 .
![]() | |
3. |
余聪,陈乐平,周全. 稀土元素对铝合金组织与性能影响的研究进展. 特种铸造及有色合金. 2021(02): 241-246 .
![]() | |
4. |
郭江,李荣,牛海云. 铈对6063铝合金组织和综合性能的影响. 中国稀土学报. 2021(02): 275-281 .
![]() |