AdvancedSearch
MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
Citation: MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002

Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy

More Information
  • The CoCrFeNiCuTix(x = 0.25, , 0.50, 0.75, 1.00 by molar) high-entropy alloys (HEAs) were prepared by vacuum hot-pressing sintering in this paper. The effects of Ti contents on the microstructure and corrosion resistance of the CoCrFeNiCuTix HEAs were investigated and analyzed by optical microscope (OM), X-ray diffractometer (XRD), scanning electron microscope (SEM), HVS-1000B digital microhardness tester, and electrochemical workstation. The results show that the CoCrFeNiCuTix HEAs with different Ti contents by molar have the face-centeredcubic phase structure with the dendritic crystal microstructures. With the increase of Ti content, the dendritic structure declines in numbers, and the hardness of CoCrFeNiCuTix HEAs increases first and then decreases; the microhardness of the prepared HEAs reaches the maximum up to HV 755 at x=0.5. The self-corrosion potential of the prepared HEAs is positive to that of 45# steel; with the increase of Ti content by molar, the self-corrosion potential of the prepared HEAs increases first and then decrease, and the best corrosion resistance is obtained at x=0.5.
  • [1]
    梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展. 材料工程, 2009(12): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200912020.htm

    Liang X B, Wei M, Cheng J B, et al. Research progress in advanced materials of high-entropy alloys. J Mater Eng, 2009(12): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200912020.htm
    [2]
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 DOI: 10.1002/adem.200300567
    [3]
    Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater, 2004, 6(1-2): 74 DOI: 10.1002/adem.200300507/abstract
    [4]
    李忠丽, 孙宏飞, 高鹏, 等. 新型多主元高熵合金的研究进展. 新技术新工艺, 2010(8): 62 DOI: 10.3969/j.issn.1003-5311.2010.08.020

    Li Z L, Sun H F, Gao P, et al. Research and development of thenew multi-principal high elements entropy alloy. New Technol NewProcess, 2010(8): 62 DOI: 10.3969/j.issn.1003-5311.2010.08.020
    [5]
    朱海云, 孙宏飞, 李业超. 多主元高熵合金的研究现状与发展. 新材料产业, 2008(9): 67 DOI: 10.3969/j.issn.1008-892X.2008.09.015

    Zhu H Y, Sun H F, Li Y C. Research status and development of multi-principal high-entropy alloys. Adv Mater Ind, 2008(9): 67 DOI: 10.3969/j.issn.1008-892X.2008.09.015
    [6]
    张峻嘉. AlxCoCrFeNiTi0.5系高熵合金的微观组织结构及性能[学位论文]. 大连: 大连理工大学, 2013

    Zhang J J. The Microstructure and Performance of High-Entropy Alloys AlxCoCrFeNiTi0.5[Dissertation]. Dalian: Dalian University of Technology, 2013
    [7]
    Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Nihigh-entropy alloys. Acta Mater, 2013, 61(13): 4887 DOI: 10.1016/j.actamat.2013.04.058
    [8]
    Zhang Y, Lu Z P, Ma S G, et al. Guidelines in predicting phase formation of high-entropyalloys. Mater Res Soc Commun, 2014, 4(2): 57 http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1179%2F1743284715Y.0000000031&key=10.1557%2Fmrc.2014.11
    [9]
    Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep, 2013, 3: 1455 DOI: 10.1038/srep01455
    [10]
    Zhu J M, Fu H M, Zhang H F, et al. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater Sci Eng A, 2010, 527(26): 6975 DOI: 10.1016/j.msea.2010.07.028
    [11]
    Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci, 2010, 52(10): 3481 DOI: 10.1016/j.corsci.2010.06.025
    [12]
    Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59(16): 6308 DOI: 10.1016/j.actamat.2011.06.041
    [13]
    Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd, 2009, 486(1-2): 427 DOI: 10.1016/j.jallcom.2009.06.182
    [14]
    Wang X F, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 2007, 15(3): 357 DOI: 10.1016/j.intermet.2006.08.005
    [15]
    谢红波, 刘贵仲, 郭景杰, 等. Ti对AlFeCrCoCu高熵合金组织及耐磨性能的影响. 稀有金属材料与工程, 2016, 45(1): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201601030.htm

    Xie H B, Liu G Z, Guo J J, et al. Effect of Ti addition on the microstructure and wear properties of AlFeCrCoCu high-entropy alloy. Rare Met Mater Eng, 2016, 45(1): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201601030.htm
    [16]
    于源, 谢发勤, 张铁邦, 等. AlCoCrFeNiTi0.5高熵合金的组织控制和腐蚀性能. 稀有金属材料与工程, 2012, 41(5): 862 DOI: 10.3969/j.issn.1002-185X.2012.05.023

    Yu Y, Xie F Q, Zhang T B, et al. Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy. Rare Met Mater Eng, 2012, 41(5): 862 DOI: 10.3969/j.issn.1002-185X.2012.05.023
    [17]
    张勇, 周云军, 惠希东, 等. 大块金属玻璃及高熵合金的合金化作用. 中国科学(G辑), 2008, 38(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804012.htm

    Zhang Y, Zhou Y J, Hui X D, et al. Alloying of bulk metallic glass and high-entropy alloys. Sci China G, 2008, 38(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200804012.htm
    [18]
    牛雪莲. 钢基体腐蚀防护的高熵合金AlxFeCrCoNiCu涂层研究[学位论文]. 大连: 大连理工大学, 2014

    Niu X L. Study of Steel Corrosion Protection by High-Entropy Alloy Coatings AlxFeCrCoNiCu[Dissertation]. Dalian: Dalian University of Technology, 2014
    [19]
    盛洪飞. AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究[学位论文]. 合肥: 中国科学技术大学, 2014

    Sheng H F. Processing, Microstructure and Properties of Al xCoCrCuFeNi High Entropy Alloys and Their in-situ Composite[Dissertation]. Hefei: University of Science and Technology of China, 2014
    [20]
    Cantor B, Chang I T H, Knight P, et al. Microstructural development inequiatomic multicomponent alloys. Mater Sci Eng A, 2004, 375-377: 213 http://www.sciencedirect.com/science/article/pii/s0921509303009936
    [21]
    董鑫涛, 刘贵仲, 班煜峰, 等. Ti元素对Al1.2FeCrCoNiTix高熵合金微观组织及硬度的影响. 热加工工艺, 2018, 47(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804018.htm

    Dong X T, Liu G Z, Ban Y F, et al. Effect of Ti element on microstructure and hardness of Al1.2FeCrCoNiTix high-entropy alloys. Hot Working Technol, 2018, 47(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804018.htm
  • Related Articles

    [1]ZHANG Wei, SHANG Xianhe, HU Minglei, SUI Fei, HE Xing, ZHOU Liangdong, NI Xiaoqing, ZHANG Liang, KONG Decheng, DONG Chaofang. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings[J]. Powder Metallurgy Technology, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
    [2]The influence of La2O3 addition amount on the microstructure and hardness of induction heating iron-based composite coatings[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2025010008
    [3]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [4]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WANG Cheng-yang, CHANG Yang, ZHANG Lin-hai, JI Peng-fei, DONG Di. Effect of ZrO2 content on microstructure and properties of molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(5): 429-433. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030008
    [7]ZHAO Hai-tao, LIU Chao. Effect of aging time on microstructure and hardness of Cu-4.5Ti alloys prepared by surface mechanical grinding[J]. Powder Metallurgy Technology, 2020, 38(2): 92-97. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.002
    [8]ZHU Xue-chao, WEI Qing-song, SUN Chun-hua. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment[J]. Powder Metallurgy Technology, 2019, 37(2): 83-90. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.001
    [9]Cao Ruijun, Lin Chenguang. Research progress of hardness model for WC-Co cemented carbide[J]. Powder Metallurgy Technology, 2013, 31(5): 374-378. DOI: 10.3969/j.issn.1001-3784.2013.05.011
    [10]Xiao Yong, Liu Shaojun, Wu Jian, Qu Xuanhui. Effect of trace alloying elements addition on microstructure and hardness of alumina dispersion strengthened copper alloys[J]. Powder Metallurgy Technology, 2012, 30(4): 260-265. DOI: 10.3969/j.issn.1001-3784.2012.04.004
  • Cited by

    Periodical cited type(5)

    1. 杨文斌,李仕宇,肖乾,丁昊昊,慕鑫鹏,杨春辉,陈道云. 添加不同固体润滑剂铁基合金激光熔覆涂层的干滑动摩擦磨损性能. 机械工程材料. 2024(03): 57-67 .
    2. 胡宁宁,张修恒,陈鹏,王崧全,陈天驰. 银吡唑甲基吡啶配合物复合润滑油添加剂的高温摩擦学性能研究与曲线拟合. 摩擦学学报. 2023(12): 1434-1444 .
    3. 孙德勤,张黎伟,蒋雪梅,刁朔. 超高强韧冷切锯片材料的进展与应用. 热加工工艺. 2022(17): 1-5+11 .
    4. 叶平元,钱东升,王华君,蒋骋,姚振华. H13钢基自润滑模具材料组织与性能. 塑性工程学报. 2022(10): 230-236 .
    5. 施琴,左文艳,赵光霞. 含Cr和NbSe_2铜基电接触复合材料的制备及性能研究. 粉末冶金技术. 2020(06): 455-464 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1107) PDF downloads (62) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return