Citation: | SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009 |
[1] |
张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201904012.htm
Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201904012.htm
|
[2] |
胡婷萍, 高丽敏, 杨海楠. 航空航天用增材制造金属结构件的无损检测研究进展. 航空制造技术, 2019, 62(8): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201908020.htm
Hu T P, Gao L M, Yang H N. Application of nondestructive testing techniques on additive manufacturing in aerospace fields. Aeronaut Manuf Technol, 2019, 62(8): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201908020.htm
|
[3] |
方旭, 董军峰. 增材制造技术在骨缺损修复治疗中的应用. 中国组织工程研究, 2019, 23(18): 2915 DOI: 10.3969/j.issn.2095-4344.1706
Fang X, Dong J F. Application of additive manufacturing technology in bone defects. Chin J Tissue Eng Res, 2019, 23(18): 2915 DOI: 10.3969/j.issn.2095-4344.1706
|
[4] |
Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res, 2019, 9(3): 179 DOI: 10.1016/j.jobcr.2019.04.004
|
[5] |
Moses Oyesola, Khumbulani Mpofu, Ntombi Mathe. A techno-economic analytical approach of laser-based additive manufacturing processes for aerospace application. Procedia Manuf, 2019, 35: 155 DOI: 10.1016/j.promfg.2019.05.019
|
[6] |
Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B, 2018, 143: 172 DOI: 10.1016/j.compositesb.2018.02.012
|
[7] |
程玉婉, 关航健, 李博, 等. 金属3D打印技术及其专用粉末特征与应用. 材料导报, 2017, 31(增刊1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1022.htm
Cheng Y W, Guan H J, Li B, et al. Characteristics and applications of metal powders for 3D printing. Mater Rev, 2017, 31(Suppl 1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1022.htm
|
[8] |
张阳军, 陈英. 金属材料增材制造技术的应用研究进展. 粉末冶金工业, 2018, 28(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201801019.htm
Zhang Y J, Chen Y. Research on the application of metal additive manufacturing technology. Powder Metall Ind, 2018, 28(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201801019.htm
|
[9] |
宗贵升, 赵浩. 金属增材制造技术工艺及应用. 粉末冶金工业, 2019, 29(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905001.htm
Zong G S, Zhao H. Technology and application of metal 3D printing. Powder Metall Ind, 2019, 29(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905001.htm
|
[10] |
陈金健, 胡立双, 胡双启, 等. 钛粉尘云最小点火能及抑制技术研究. 消防科学与技术, 2015, 34(5): 566 DOI: 10.3969/j.issn.1009-0029.2015.05.004
Chen J J, Hu L S, Hu S Q, et al. Study on the minimum ignition energy and inhibition technology of titanium dust cloud. Fire Sci Technol, 2015, 34(5): 566 DOI: 10.3969/j.issn.1009-0029.2015.05.004
|
[11] |
董海佩. 钛粉的爆炸参数及爆炸危险性评价[学位论文]. 南宁: 广西大学, 2018
Dong H P. The Explosion Parameters and Explosion Risk Evaluation of Titanuium Powder[Dissertation]. Nanning: Guangxi University, 2018
|
[12] |
Nifuku M, Koyanaka S, Ohya H, et al. Ignitability characteristics of aluminum and magnesium dusts that are generated during the shredding of post-consumer wastes. J Loss Prev Process Ind, 2007, 20(4): 322 http://www.sciencedirect.com/science/article/pii/S0950423007000587
|
[13] |
王以革. 铝粉爆炸特性与涉铝粉场所防爆对策探讨. 消防科学与技术, 2017, 36(6): 850 DOI: 10.3969/j.issn.1009-0029.2017.06.043
Wang Y G. Discussion on the explosion characteristics of aluminum dust and explosion prevention countermeasure of aluminum powder site. Fire Sci Technol, 2017, 36(6): 850 DOI: 10.3969/j.issn.1009-0029.2017.06.043
|
[14] |
钟英鹏, 徐冬, 李刚, 等. 镁粉尘云最低着火温度的实验测试. 爆炸与冲击, 2009, 29(4): 429 DOI: 10.3321/j.issn:1001-1455.2009.04.017
Zhong Y P, Xu D, Li G, et al. Measurement of minimum ignition temperature for magnesium dust cloud. Explos Shock Waves, 2009, 29(4): 429 DOI: 10.3321/j.issn:1001-1455.2009.04.017
|
[15] |
叶亚明, 梁峻, 江湖一佳, 等. 镁粉尘燃烧爆炸研究进展. 消防科学与技术, 2019, 38(7): 921 DOI: 10.3969/j.issn.1009-0029.2019.07.005
Ye Y M, Liang J, Jiang H Y J, et al. Research progress on Mg dust combustion explosion. Fire Sci Technol, 2019, 38(7): 921 DOI: 10.3969/j.issn.1009-0029.2019.07.005
|
[16] |
王霞飞. 镁铝合金粉最低着火温度及最小点火能的非线性预测[学位论文]. 太原: 中北大学, 2016
Wang X F. Research of Monlinear Forecast on Minimum Ignition Energy and Minimum Ignition Temperature of Mg-Al Alloy Dust[Dissertation]. Taiyuan: North University of China, 2016
|
[17] |
Wang Q H, Sun Y L, Zhang Z J, et al. Ignition and explosion characteristics of micron-scale aluminum-silicon alloy powder. J Loss Prev Process Ind, 2019, 62(3): 902 http://www.sciencedirect.com/science/article/pii/S0950423019302645
|
[18] |
沈阳因斯福环保安全科技有限公司. 粉尘爆炸研究数字化平台[J/OL]. 沈阳因斯福环保安全科技有限公司(2017-10-12)[2020-01-12]. https://dees.envsafe.cn/
EnvSafe Co., Ltd. Digital platform of dust explosion research[J/OL]. EnvSafe Co., Ltd(2017-10-12)[2020-01-12]. https://dees.envsafe.cn/
|
[19] |
王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368 DOI: 10.3969/j.issn.1001-3784.2016.05.009
Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368 DOI: 10.3969/j.issn.1001-3784.2016.05.009
|
[20] |
Zhao J, Lü L X, Wang K H, et al. Effects of strain state and slip mode on the texture evolution of a near α TA15 titanium alloy during hot deformation based on crystal plasticity method. J Mater Sci Technol, 2020, 38: 125 DOI: 10.1016/j.jmst.2019.07.051
|
[21] |
Wang X Q, Chou K. The effects of stress relieving heat treatment on the microstructure and residual stress of Inconel 718 fabricated by laser metal powder bed fusion additive manufacturing process. J Manuf Processes, 2019, 48: 154 DOI: 10.1016/j.jmapro.2019.10.027
|
[22] |
Wang D J, Li H, Zheng W. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering. J Mater Sci Technol, 2020, 37: 46 DOI: 10.1016/j.jmst.2019.07.037
|
[23] |
Wang X X, Zhan M, Gao P F, et al. Micromechanical behaviour of TA15 alloy cylindrical parts processed by multi-pass flow forming. Mater Sci Eng A, 2019, 737: 328 http://www.sciencedirect.com/science/article/pii/S0921509318312681
|
[24] |
童彤, 于燕, 宋子威. 3D打印工艺参数对TC4牙植体材料耐蚀性能的研究. 热加工工艺, 2020, 49(2): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202002006.htm
Tong T, Yu Y, Song Z W. Study on effects of 3D printing process parameters on corrosion resistance of TC4 dental implant materials. Hot Working Technol, 2020, 49(2): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202002006.htm
|
[25] |
刘海军, 张治民, 徐健, 等. 等离子烧结态TC4钛合金热变形行为及本构模型研究. 塑性工程学报, 2019, 26(6): 263 DOI: 10.3969/j.issn.1007-2012.2019.06.037
Liu H J, Zhang Z M, Xu J, et al. Study on hot deformation behavior and constitutive model of SPSed TC4 titanimu alloy. J Plast Eng, 2019, 26(6): 263 DOI: 10.3969/j.issn.1007-2012.2019.06.037
|
[26] |
国家技术监督局. GB16428-1996粉尘云最小着火能量测定方法. 北京: 中国标准出版社, 1997
State Bureau of Technology Supervision. GB16428-1996 Determination of the Minimum Ignition Energy of Dust Cloud. Beijing: Standards Press of China, 1997
|
[27] |
国家技术监督局. GB16429-1996粉尘云最低着火温度测定方法. 北京: 中国标准出版社, 1997
State Bureau of Technology Supervision. GB16429-1996 Determination of the Minimum Ignition Temperature of Dust Cloud. Beijing: Standards Press of China, 1997
|
[28] |
中国国家标准化管理委员会. GB16430-2018粉尘层最低着火温度测定方法. 北京: 中国标准出版社, 2019
Standardization Administration of the People's Republic of China. GB16430-2018 Determination of the Minimum Ignition Temperature of Dust Layer. Beijing: Standards Press of China, 2019
|
[29] |
中国国家标准化管理委员会. GB150-2011压力容器. 北京: 中国标准出版社, 2012
Standardization Administration of the People's Republic of China. GB150-2011 Pressure Vessels. Beijing: Standards Press of China, 2012
|
1. |
顾祥宇,林媛,曲星霖,郭玉玺,张利,李晓峰. 激光功率对激光粉末床熔融成形Fe–Mn–Al–Ni–C轻质钢组织及性能的影响. 粉末冶金技术. 2024(05): 471-480 .
![]() |