AdvancedSearch
SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009
Citation: SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009

Study on the explosion sensitivity of metal powders used in additive manufacturing

More Information
  • Corresponding author:

    PANG Lei, E-mail: pang@bipt.edu.cn

  • Received Date: January 16, 2020
  • Based on the parameters of minimum ignition energy (MIE), minimum ignition temperature of dust cloud (MITC), and minimum ignition temperature of dust layer (MITL), the explosion sensitivity and influence factors of the typical metal powders used in additive manufacturing were investigated. The experimental results show that, the explosive sensitivity of nickel alloy powders and stainless steel powders is lower, while the explosive sensitivity of the titanium alloy powders is slightly higher than that of the aluminum alloy powders. The order of powder explosive sensitivity is as TA15>TC4>AlSi10Mg>316L>GH4169>GH3536>GH3625/304L. The results also show that, both nickel alloy powders and stainless steel powders could not be ignited. The MIE and MITC of titanium alloy powders and aluminum alloy powders decrease first and then increase with the increase of dust concentration, while decrease first and then increase with the increase of dust spraying pressure.
  • [1]
    张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201904012.htm

    Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201904012.htm
    [2]
    胡婷萍, 高丽敏, 杨海楠. 航空航天用增材制造金属结构件的无损检测研究进展. 航空制造技术, 2019, 62(8): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201908020.htm

    Hu T P, Gao L M, Yang H N. Application of nondestructive testing techniques on additive manufacturing in aerospace fields. Aeronaut Manuf Technol, 2019, 62(8): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201908020.htm
    [3]
    方旭, 董军峰. 增材制造技术在骨缺损修复治疗中的应用. 中国组织工程研究, 2019, 23(18): 2915 DOI: 10.3969/j.issn.2095-4344.1706

    Fang X, Dong J F. Application of additive manufacturing technology in bone defects. Chin J Tissue Eng Res, 2019, 23(18): 2915 DOI: 10.3969/j.issn.2095-4344.1706
    [4]
    Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res, 2019, 9(3): 179 DOI: 10.1016/j.jobcr.2019.04.004
    [5]
    Moses Oyesola, Khumbulani Mpofu, Ntombi Mathe. A techno-economic analytical approach of laser-based additive manufacturing processes for aerospace application. Procedia Manuf, 2019, 35: 155 DOI: 10.1016/j.promfg.2019.05.019
    [6]
    Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B, 2018, 143: 172 DOI: 10.1016/j.compositesb.2018.02.012
    [7]
    程玉婉, 关航健, 李博, 等. 金属3D打印技术及其专用粉末特征与应用. 材料导报, 2017, 31(增刊1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1022.htm

    Cheng Y W, Guan H J, Li B, et al. Characteristics and applications of metal powders for 3D printing. Mater Rev, 2017, 31(Suppl 1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1022.htm
    [8]
    张阳军, 陈英. 金属材料增材制造技术的应用研究进展. 粉末冶金工业, 2018, 28(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201801019.htm

    Zhang Y J, Chen Y. Research on the application of metal additive manufacturing technology. Powder Metall Ind, 2018, 28(1): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201801019.htm
    [9]
    宗贵升, 赵浩. 金属增材制造技术工艺及应用. 粉末冶金工业, 2019, 29(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905001.htm

    Zong G S, Zhao H. Technology and application of metal 3D printing. Powder Metall Ind, 2019, 29(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905001.htm
    [10]
    陈金健, 胡立双, 胡双启, 等. 钛粉尘云最小点火能及抑制技术研究. 消防科学与技术, 2015, 34(5): 566 DOI: 10.3969/j.issn.1009-0029.2015.05.004

    Chen J J, Hu L S, Hu S Q, et al. Study on the minimum ignition energy and inhibition technology of titanium dust cloud. Fire Sci Technol, 2015, 34(5): 566 DOI: 10.3969/j.issn.1009-0029.2015.05.004
    [11]
    董海佩. 钛粉的爆炸参数及爆炸危险性评价[学位论文]. 南宁: 广西大学, 2018

    Dong H P. The Explosion Parameters and Explosion Risk Evaluation of Titanuium Powder[Dissertation]. Nanning: Guangxi University, 2018
    [12]
    Nifuku M, Koyanaka S, Ohya H, et al. Ignitability characteristics of aluminum and magnesium dusts that are generated during the shredding of post-consumer wastes. J Loss Prev Process Ind, 2007, 20(4): 322 http://www.sciencedirect.com/science/article/pii/S0950423007000587
    [13]
    王以革. 铝粉爆炸特性与涉铝粉场所防爆对策探讨. 消防科学与技术, 2017, 36(6): 850 DOI: 10.3969/j.issn.1009-0029.2017.06.043

    Wang Y G. Discussion on the explosion characteristics of aluminum dust and explosion prevention countermeasure of aluminum powder site. Fire Sci Technol, 2017, 36(6): 850 DOI: 10.3969/j.issn.1009-0029.2017.06.043
    [14]
    钟英鹏, 徐冬, 李刚, 等. 镁粉尘云最低着火温度的实验测试. 爆炸与冲击, 2009, 29(4): 429 DOI: 10.3321/j.issn:1001-1455.2009.04.017

    Zhong Y P, Xu D, Li G, et al. Measurement of minimum ignition temperature for magnesium dust cloud. Explos Shock Waves, 2009, 29(4): 429 DOI: 10.3321/j.issn:1001-1455.2009.04.017
    [15]
    叶亚明, 梁峻, 江湖一佳, 等. 镁粉尘燃烧爆炸研究进展. 消防科学与技术, 2019, 38(7): 921 DOI: 10.3969/j.issn.1009-0029.2019.07.005

    Ye Y M, Liang J, Jiang H Y J, et al. Research progress on Mg dust combustion explosion. Fire Sci Technol, 2019, 38(7): 921 DOI: 10.3969/j.issn.1009-0029.2019.07.005
    [16]
    王霞飞. 镁铝合金粉最低着火温度及最小点火能的非线性预测[学位论文]. 太原: 中北大学, 2016

    Wang X F. Research of Monlinear Forecast on Minimum Ignition Energy and Minimum Ignition Temperature of Mg-Al Alloy Dust[Dissertation]. Taiyuan: North University of China, 2016
    [17]
    Wang Q H, Sun Y L, Zhang Z J, et al. Ignition and explosion characteristics of micron-scale aluminum-silicon alloy powder. J Loss Prev Process Ind, 2019, 62(3): 902 http://www.sciencedirect.com/science/article/pii/S0950423019302645
    [18]
    沈阳因斯福环保安全科技有限公司. 粉尘爆炸研究数字化平台[J/OL]. 沈阳因斯福环保安全科技有限公司(2017-10-12)[2020-01-12]. https://dees.envsafe.cn/

    EnvSafe Co., Ltd. Digital platform of dust explosion research[J/OL]. EnvSafe Co., Ltd(2017-10-12)[2020-01-12]. https://dees.envsafe.cn/
    [19]
    王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368 DOI: 10.3969/j.issn.1001-3784.2016.05.009

    Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368 DOI: 10.3969/j.issn.1001-3784.2016.05.009
    [20]
    Zhao J, Lü L X, Wang K H, et al. Effects of strain state and slip mode on the texture evolution of a near α TA15 titanium alloy during hot deformation based on crystal plasticity method. J Mater Sci Technol, 2020, 38: 125 DOI: 10.1016/j.jmst.2019.07.051
    [21]
    Wang X Q, Chou K. The effects of stress relieving heat treatment on the microstructure and residual stress of Inconel 718 fabricated by laser metal powder bed fusion additive manufacturing process. J Manuf Processes, 2019, 48: 154 DOI: 10.1016/j.jmapro.2019.10.027
    [22]
    Wang D J, Li H, Zheng W. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering. J Mater Sci Technol, 2020, 37: 46 DOI: 10.1016/j.jmst.2019.07.037
    [23]
    Wang X X, Zhan M, Gao P F, et al. Micromechanical behaviour of TA15 alloy cylindrical parts processed by multi-pass flow forming. Mater Sci Eng A, 2019, 737: 328 http://www.sciencedirect.com/science/article/pii/S0921509318312681
    [24]
    童彤, 于燕, 宋子威. 3D打印工艺参数对TC4牙植体材料耐蚀性能的研究. 热加工工艺, 2020, 49(2): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202002006.htm

    Tong T, Yu Y, Song Z W. Study on effects of 3D printing process parameters on corrosion resistance of TC4 dental implant materials. Hot Working Technol, 2020, 49(2): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202002006.htm
    [25]
    刘海军, 张治民, 徐健, 等. 等离子烧结态TC4钛合金热变形行为及本构模型研究. 塑性工程学报, 2019, 26(6): 263 DOI: 10.3969/j.issn.1007-2012.2019.06.037

    Liu H J, Zhang Z M, Xu J, et al. Study on hot deformation behavior and constitutive model of SPSed TC4 titanimu alloy. J Plast Eng, 2019, 26(6): 263 DOI: 10.3969/j.issn.1007-2012.2019.06.037
    [26]
    国家技术监督局. GB16428-1996粉尘云最小着火能量测定方法. 北京: 中国标准出版社, 1997

    State Bureau of Technology Supervision. GB16428-1996 Determination of the Minimum Ignition Energy of Dust Cloud. Beijing: Standards Press of China, 1997
    [27]
    国家技术监督局. GB16429-1996粉尘云最低着火温度测定方法. 北京: 中国标准出版社, 1997

    State Bureau of Technology Supervision. GB16429-1996 Determination of the Minimum Ignition Temperature of Dust Cloud. Beijing: Standards Press of China, 1997
    [28]
    中国国家标准化管理委员会. GB16430-2018粉尘层最低着火温度测定方法. 北京: 中国标准出版社, 2019

    Standardization Administration of the People's Republic of China. GB16430-2018 Determination of the Minimum Ignition Temperature of Dust Layer. Beijing: Standards Press of China, 2019
    [29]
    中国国家标准化管理委员会. GB150-2011压力容器. 北京: 中国标准出版社, 2012

    Standardization Administration of the People's Republic of China. GB150-2011 Pressure Vessels. Beijing: Standards Press of China, 2012
  • Related Articles

    [1]FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090006
    [2]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [3]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [4]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [9]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
    [10]Wang Fuchi, Wang Yingchun, Huang Guohua, Li Shukui. Effects of Carbon Content on Precipitated Phase and Dynamic Mechanical Properties of W-Ni-Fe Heavy Alloys[J]. Powder Metallurgy Technology, 1998, 16(2): 93-96.
  • Cited by

    Periodical cited type(1)

    1. 顾祥宇,林媛,曲星霖,郭玉玺,张利,李晓峰. 激光功率对激光粉末床熔融成形Fe–Mn–Al–Ni–C轻质钢组织及性能的影响. 粉末冶金技术. 2024(05): 471-480 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (706) PDF downloads (133) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return