AdvancedSearch
XU Bao-hai, LIU Lian-jun, CHE Ming-chao, LI Li. Effect of SiC content on friction properties of SiCp/Al composites[J]. Powder Metallurgy Technology, 2022, 40(1): 67-71. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030014
Citation: XU Bao-hai, LIU Lian-jun, CHE Ming-chao, LI Li. Effect of SiC content on friction properties of SiCp/Al composites[J]. Powder Metallurgy Technology, 2022, 40(1): 67-71. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030014

Effect of SiC content on friction properties of SiCp/Al composites

More Information
  • Corresponding author:

    LIU Lian-jun, E-mail: sdwszyz@126.com

  • Received Date: March 28, 2020
  • Accepted Date: March 13, 2020
  • Available Online: December 16, 2021
  • The SiCp/Al composites were prepared by the powder metallurgy technology, and the influences of SiC particle mass fraction on the density, Brinell hardness, microstructure, friction, and wear of the SiCp/Al composites were investigated. The results show that, a small amount of Al4C3 compounds can be formed on the surface of SiC particles, improving the bonding properties. With the increase of SiC mass fraction, the density of the SiCp/Al composites has no obvious change, when the SiC mass fraction increases to 25%, the density decreases obviously. The Brinell hardness of the SiCp/Al composites increases first and then decreases with the increase of SiC mass fraction. When SiC mass fraction is 20%, the optimal Brinell hardness is HBW 114 and the average friction coefficient can reach to the maximum as 0.3425, the surface morphology after friction is flat and shallow furrows, and the SiC particles has not obvious spalling.
  • [1]
    乔文明, 李颖. 铝基复合材料的制备及应用. 热加工工艺, 2013, 42(4): 126

    Qiao W M, Li Y. Preparation process and application of aluminum matrix composites. Hot Working Technol, 2013, 42(4): 126
    [2]
    Jung S W, Lee J H, Nam J B, et al. Analysis of strengthening mechanism in hybrid short fiber/particle reinforced metal matrix composites. Key Eng Mater, 2000, 183: 1297
    [3]
    高红霞, 陈宝龙, 樊江磊, 等. SiC颗粒增强耐磨铝基复合材料组织及性能研究. 热加工工艺, 2018, 47(8): 93

    Gao H X, Chen B L, Fan J L, et al. Study on microstructure and properties of SiC particle-reinforced wear resistant aluminum matrix composites. Hot Working Technol, 2018, 47(8): 93
    [4]
    崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用. 材料工程, 2003(6): 3 DOI: 10.3969/j.issn.1001-4381.2003.06.001

    Cui Y. Aerospace application of silicon carbide particulate reinforced aluminum matrix composites. J Mater Eng, 2003(6): 3 DOI: 10.3969/j.issn.1001-4381.2003.06.001
    [5]
    平延磊, 贾成厂, 曲选辉, 等. SiCp/Al复合材料的研究方法现状. 粉末冶金技术, 2005, 23(4): 296 DOI: 10.3321/j.issn:1001-3784.2005.04.012

    Ping Y L, Jia C C, Qu X H, et al. Present state of research methods for the SiCp/Al composites. Powder Metall Technol, 2005, 23(4): 296 DOI: 10.3321/j.issn:1001-3784.2005.04.012
    [6]
    褚克, 贾成厂, 尹法章, 等. 高体积分数SiCp/Al复合材料电子封装盒体的制备. 复合材料学报, 2006, 23(6): 108 DOI: 10.3321/j.issn:1000-3851.2006.06.018

    Chu K, Jia C C, Yin F Z, et al. Fabrication on electronic package box of SiCp/Al composites with high volume fraction of SiCp. Acta Mater Compos Sin, 2006, 23(6): 108 DOI: 10.3321/j.issn:1000-3851.2006.06.018
    [7]
    郑晶, 贾志华, 马光. 碳化硅颗粒增强铝基复合材料的研究进展. 钛工业进展, 2006, 23(6): 13 DOI: 10.3969/j.issn.1009-9964.2006.06.005

    Zheng J, Jia Z H, Ma G. Progress in research of SiC particle reinforced Al-based composites. Titanium Ind Prog, 2006, 23(6): 13 DOI: 10.3969/j.issn.1009-9964.2006.06.005
    [8]
    樊建中, 姚忠凯, 李义春, 等. 颗粒增强铝基复合材料的研究进展. 材料导报, 1997, 11(3): 48

    Fan J Z, Yao Z K, Li Y C, et al. The progress in the research of particulate-reinforced aluminum matrix composites. Mater Rev, 1997, 11(3): 48
    [9]
    褚克, 贾成厂, 梁雪冰, 等. 注射成形与压力熔渗方法制备高体积分数SiCP/Al封装盒体及其导热性能分析. 粉末冶金技术, 2007, 25(5): 348

    Chu K, Jia C C, Liang X B, et al. Fabrication of SiCp/Al composites with high volume fraction SiCp by PIM and pressure infiltration. Powder Metall Technol, 2007, 25(5): 348
    [10]
    郭明海, 刘俊友, 贾成厂, 等. 伪半固态触变成形制备SiCp/Al电子封装材料的组织与性能. 北京科技大学学报, 2014, 36(4): 489

    Guo M H, Liu J Y, Jia C C, et al. Microstructure and properties of SiCp/Al electronic packaging materials fabricated by pseudo-semi-solid thixoforming. J Univ Sci Technol Beijing, 2014, 36(4): 489
    [11]
    冯世全, 李俊玉, 苏磊, 等. 高压下超硬材料硬度特性的理论研究//第十八届中国高压科学学术会议文集. 成都, 2016: 282

    Feng S Q, Li J Y, Su L, et al. Theoretical study on hardness characteristics of super hard materials under high pressure // Proceedings of the 18th Chinese High Pressure Science Conference. Chengdu, 2016: 282
    [12]
    陈聪聪, 陈刚, 严红革, 等. 颗粒增强铝基梯度复合材料的摩擦磨损性能. 有色金属学报, 2011, 21(6): 1258

    Chen C C, Chen G, Yan H G, et al. Friction and wear properties of particle reinforced graded aluminum matrix composites. Chin J Nonferrous Met, 2011, 21(6): 1258
  • Related Articles

    [1]FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090006
    [2]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [3]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [4]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [9]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
    [10]Wang Fuchi, Wang Yingchun, Huang Guohua, Li Shukui. Effects of Carbon Content on Precipitated Phase and Dynamic Mechanical Properties of W-Ni-Fe Heavy Alloys[J]. Powder Metallurgy Technology, 1998, 16(2): 93-96.
  • Cited by

    Periodical cited type(1)

    1. 顾祥宇,林媛,曲星霖,郭玉玺,张利,李晓峰. 激光功率对激光粉末床熔融成形Fe–Mn–Al–Ni–C轻质钢组织及性能的影响. 粉末冶金技术. 2024(05): 471-480 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (446) PDF downloads (139) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return