AdvancedSearch
XU Yang, BAN Le, XIAO Zhi-yu. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2021, 39(6): 505-511. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050011
Citation: XU Yang, BAN Le, XIAO Zhi-yu. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2021, 39(6): 505-511. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050011

Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting

More Information
  • Corresponding author:

    BAN Le, E-mail: banleban@163.com

  • Received Date: May 22, 2020
  • Available Online: September 29, 2021
  • Process parameters of the CoCrWMo alloys fabricated by selective laser melting (SLM) were optimized, and the friction and wear properties of the alloy samples prepared under the optimal process parameters were analyzed. The results show that, the optimal parameters of selective laser melting are as followed: the laser power is 280 W, the scanning speed is 800 mm·s−1, the layer thickness is 0.03 mm, the scanning space is 0.10 mm, and the scanning strategy is rotation method (15° rotation between adjacent layers). The laser energy density is 117 J·mm−3, the relative density of the prepared samples is 99.4%, the top surface roughness (Ra) is 4.98 μm, the microhardness is HV 386, the tensile strength is 984 MPa, the yield strength is 663 MPa, and the elongation is 12.9%. During the dry friction, the average friction coefficient of the prepared CoCrWMo alloys decreases with the increase of the applied load, while the average wear rate increases first and then decreases under the influence of the strain-induced martensite transformation during the wear process. The main wear mechanisms are abrasive wear and adhesive wear.
  • [1]
    Toh W Q, Tan X P, Bhowmik A, et al. Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review. Materials, 2017, 11(1): 30 DOI: 10.3390/ma11010030
    [2]
    Liao Y F, Hoffman E, Wimmer M, et al. CoCrMo metal-on-metal hip replacements. Phys Chem Chem Phys, 2013, 15(3): 746 DOI: 10.1039/C2CP42968C
    [3]
    Parkar M, Chavan C. New generation bare metal stents with hybrid cell design and thin struts are safe and effective in treatment of coronary artery stenosis: real world data analysis of Protea CoCr stent. Indian Heart J, 2018, 70(Suppl2): s69
    [4]
    倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163

    Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163
    [5]
    Harun W S W, Kamariah M S I N, Muhamad N, et al. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol, 2018, 327: 128 DOI: 10.1016/j.powtec.2017.12.058
    [6]
    张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312

    Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312
    [7]
    Posada O M, Tate R J, Grant M H. Effects of CoCr metal wear debris generated from metal-on-metal hip implants and Co ions on human monocyte-like U937 cells. Toxicol in Vitro, 2015, 29(2): 271 DOI: 10.1016/j.tiv.2014.11.006
    [8]
    王松, 廖振华, 冯平法, 等. 骨科植入物金属材料生物摩擦腐蚀研究进展. 摩擦学学报, 2017, 37(1): 130

    Wang S, Liao Z H, Feng P F, et al. Research progress on biotribocorrosion of metal material in orthopedic implants. Tribology, 2017, 37(1): 130
    [9]
    Radice S, Holcomb T, Pourzal R, et al. Investigation of CoCrMo material loss in a novel bio-tribometer designed to study direct cell reaction to wear and corrosion products. Biotribology, 2019, 18: 100090 DOI: 10.1016/j.biotri.2019.100090
    [10]
    Liverani E, Fortunato A, Leardini A, et al. Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of selective laser melting (SLM). Mater Des, 2016, 106: 60 DOI: 10.1016/j.matdes.2016.05.083
    [11]
    Liverani E, Balbo A, Monticelli C, et al. Corrosion resistance and mechanical characterization of ankle prostheses fabricated via selective laser melting. Procedia CIRP, 2017, 65: 25 DOI: 10.1016/j.procir.2017.04.037
    [12]
    林辉, 杨永强, 张国庆, 等. 激光选区熔化医用钴铬钼合金的摩擦性能. 光学学报, 2016, 36(11): 1114003 DOI: 10.3788/AOS201636.1114003

    Lin H, Yang Y Q, Zhang G Q, et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting. Acta Opt Sin, 2016, 36(11): 1114003 DOI: 10.3788/AOS201636.1114003
    [13]
    Zhang M K, Yang Y Q, Song C H, et al. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J Alloys Compd, 2018, 750: 878 DOI: 10.1016/j.jallcom.2018.04.054
    [14]
    张浩. 选区激光熔化CoCrW合金工艺优化和微观组织分析[学位论文]. 太原: 中北大学, 2018

    Zhang H. Process Optimization and Microstructure Analysis of Selective Laser Melting CoCrW Alloy [Dissertation]. Taiyuan: North University of China, 2018
    [15]
    李翠芹. 选区激光熔化成型CoCrMo合金的组织与性能研究[学位论文]. 西安: 西安理工大学, 2019

    Li C Q. Study on The Microstructure and Properties of CoCrMo Alloys Fabricated by Selective Laser Melting [Dissertation]. Xi'an: Xi'an University of Technology, 2019
    [16]
    Yan X C, Huang C J, Chen C Y, et al. Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting. Surf Coat Technol, 2019, 371: 161 DOI: 10.1016/j.surfcoat.2018.03.072
    [17]
    Martinez-Nogues V, Nesbitt J M, Wood R J K, et al. Nano-scale wear characterization of CoCrMo biomedical alloys. Tribol Int, 2016, 93: 563 DOI: 10.1016/j.triboint.2015.03.037
    [18]
    Lashgari H R, Zangeneh S, Ketabchi M. Isothermal aging effect on the microstructure and dry sliding wear behavior of Co–28Cr–5Mo–0. 3C alloy. J Mater Sci, 2011, 46(22): 7262
    [19]
    Salinas-Rodriguez A, Rodriguez-Galicia J L. Deformation behavior of low-carbon Co–Cr–Mo alloys for low-friction implant applications. J Biomed Mater Res, 1996, 31(3): 409 DOI: 10.1002/(SICI)1097-4636(199607)31:3<409::AID-JBM16>3.0.CO;2-D
    [20]
    Zhu Z Y, Meng L, Chen L. Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys. Rare Met, 2020, 39(3): 241 DOI: 10.1007/s12598-019-01364-6
    [21]
    Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Mater, 2013, 61(5): 1648 DOI: 10.1016/j.actamat.2012.11.041
    [22]
    Mori M, Yamanaka K, Matsumoto H, et al. Evolution of cold-rolled microstructures of biomedical Co–Cr–Mo alloys with and without N doping. Mater Sci Eng A, 2010, 528(2): 614 DOI: 10.1016/j.msea.2010.09.002
    [23]
    Balagna C, Spriano S, Faga M G. Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance. Mater Sci Eng C, 2012, 32(7): 1868 DOI: 10.1016/j.msec.2012.05.003
  • Related Articles

    [1]HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110003
    [2]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [3]NI Xiaoqing, ZHANG Liang, WU Wenheng, KONG Decheng, WEN Ying, WANG Li, DONG Chaofang. Effect of electrochemical polishing on surface quality and corrosion resistance of Ti6Al4V crowns fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(6): 528-535, 542. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110011
    [4]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [5]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [6]Corrosion Resistance of Ti(C,N)-based Cermet for Surgical Cutting Tools[J]. Powder Metallurgy Technology, 2002, 20(2): 82-85. DOI: 10.3321/j.issn:1001-3784.2002.02.005
    [7]Ye Minghui, Zhao Zhongmin, Du Xinkang, Xin Wentong, Wang Jianjiang. INVESTIGATION ON CORROSION-RESISTANCE OF DOUBLE LINED CERAMIC COMPOSITE PIPES PRODUCED BY GRAVITATIONAL SEPARATION SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(2): 106-110.
    [8]Duan Huiping, Wei Yanping, Yin Sheng, Lai Heyi. Investigation on corosion resistance of alloy produced by SHS centrifugal process[J]. Powder Metallurgy Technology, 1998, 16(3): 178-182.
    [9]Huang Jianzhong, Huang Boyun, Lu: Haibo. CHARACTERISTICS AND CORROSION RESISTANT PROPERTY OF HIGH TUNGSTEN HEAVY ALLOY SINTERED AT LOW TEMPERATURE[J]. Powder Metallurgy Technology, 1996, 14(1): 37-43.
    [10]Song Huan, Zhang Song, Zhang Shusheng, Sui Quanming. STUDY ON FLAME SPRAY WELDING BY USING CAST TUNGSTEN CARBIDE ALLOY POWDER PREFORMED COMPACT AND WEAR RESISTANCE[J]. Powder Metallurgy Technology, 1995, 13(4): 259-264.
  • Cited by

    Periodical cited type(1)

    1. 刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (989) PDF downloads (86) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return