Citation: | XU Yang, BAN Le, XIAO Zhi-yu. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2021, 39(6): 505-511. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050011 |
[1] |
Toh W Q, Tan X P, Bhowmik A, et al. Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review. Materials, 2017, 11(1): 30 DOI: 10.3390/ma11010030
|
[2] |
Liao Y F, Hoffman E, Wimmer M, et al. CoCrMo metal-on-metal hip replacements. Phys Chem Chem Phys, 2013, 15(3): 746 DOI: 10.1039/C2CP42968C
|
[3] |
Parkar M, Chavan C. New generation bare metal stents with hybrid cell design and thin struts are safe and effective in treatment of coronary artery stenosis: real world data analysis of Protea CoCr stent. Indian Heart J, 2018, 70(Suppl2): s69
|
[4] |
倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163
Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163
|
[5] |
Harun W S W, Kamariah M S I N, Muhamad N, et al. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol, 2018, 327: 128 DOI: 10.1016/j.powtec.2017.12.058
|
[6] |
张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312
Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312
|
[7] |
Posada O M, Tate R J, Grant M H. Effects of CoCr metal wear debris generated from metal-on-metal hip implants and Co ions on human monocyte-like U937 cells. Toxicol in Vitro, 2015, 29(2): 271 DOI: 10.1016/j.tiv.2014.11.006
|
[8] |
王松, 廖振华, 冯平法, 等. 骨科植入物金属材料生物摩擦腐蚀研究进展. 摩擦学学报, 2017, 37(1): 130
Wang S, Liao Z H, Feng P F, et al. Research progress on biotribocorrosion of metal material in orthopedic implants. Tribology, 2017, 37(1): 130
|
[9] |
Radice S, Holcomb T, Pourzal R, et al. Investigation of CoCrMo material loss in a novel bio-tribometer designed to study direct cell reaction to wear and corrosion products. Biotribology, 2019, 18: 100090 DOI: 10.1016/j.biotri.2019.100090
|
[10] |
Liverani E, Fortunato A, Leardini A, et al. Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of selective laser melting (SLM). Mater Des, 2016, 106: 60 DOI: 10.1016/j.matdes.2016.05.083
|
[11] |
Liverani E, Balbo A, Monticelli C, et al. Corrosion resistance and mechanical characterization of ankle prostheses fabricated via selective laser melting. Procedia CIRP, 2017, 65: 25 DOI: 10.1016/j.procir.2017.04.037
|
[12] |
林辉, 杨永强, 张国庆, 等. 激光选区熔化医用钴铬钼合金的摩擦性能. 光学学报, 2016, 36(11): 1114003 DOI: 10.3788/AOS201636.1114003
Lin H, Yang Y Q, Zhang G Q, et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting. Acta Opt Sin, 2016, 36(11): 1114003 DOI: 10.3788/AOS201636.1114003
|
[13] |
Zhang M K, Yang Y Q, Song C H, et al. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J Alloys Compd, 2018, 750: 878 DOI: 10.1016/j.jallcom.2018.04.054
|
[14] |
张浩. 选区激光熔化CoCrW合金工艺优化和微观组织分析[学位论文]. 太原: 中北大学, 2018
Zhang H. Process Optimization and Microstructure Analysis of Selective Laser Melting CoCrW Alloy [Dissertation]. Taiyuan: North University of China, 2018
|
[15] |
李翠芹. 选区激光熔化成型CoCrMo合金的组织与性能研究[学位论文]. 西安: 西安理工大学, 2019
Li C Q. Study on The Microstructure and Properties of CoCrMo Alloys Fabricated by Selective Laser Melting [Dissertation]. Xi'an: Xi'an University of Technology, 2019
|
[16] |
Yan X C, Huang C J, Chen C Y, et al. Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting. Surf Coat Technol, 2019, 371: 161 DOI: 10.1016/j.surfcoat.2018.03.072
|
[17] |
Martinez-Nogues V, Nesbitt J M, Wood R J K, et al. Nano-scale wear characterization of CoCrMo biomedical alloys. Tribol Int, 2016, 93: 563 DOI: 10.1016/j.triboint.2015.03.037
|
[18] |
Lashgari H R, Zangeneh S, Ketabchi M. Isothermal aging effect on the microstructure and dry sliding wear behavior of Co–28Cr–5Mo–0. 3C alloy. J Mater Sci, 2011, 46(22): 7262
|
[19] |
Salinas-Rodriguez A, Rodriguez-Galicia J L. Deformation behavior of low-carbon Co–Cr–Mo alloys for low-friction implant applications. J Biomed Mater Res, 1996, 31(3): 409 DOI: 10.1002/(SICI)1097-4636(199607)31:3<409::AID-JBM16>3.0.CO;2-D
|
[20] |
Zhu Z Y, Meng L, Chen L. Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys. Rare Met, 2020, 39(3): 241 DOI: 10.1007/s12598-019-01364-6
|
[21] |
Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Mater, 2013, 61(5): 1648 DOI: 10.1016/j.actamat.2012.11.041
|
[22] |
Mori M, Yamanaka K, Matsumoto H, et al. Evolution of cold-rolled microstructures of biomedical Co–Cr–Mo alloys with and without N doping. Mater Sci Eng A, 2010, 528(2): 614 DOI: 10.1016/j.msea.2010.09.002
|
[23] |
Balagna C, Spriano S, Faga M G. Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance. Mater Sci Eng C, 2012, 32(7): 1868 DOI: 10.1016/j.msec.2012.05.003
|
1. |
刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .
![]() |