Citation: | XIAO Yi, XIAO Huaqiang, HE Jiarong, FENG Jinyu, YOU Chuanchuan, ZHAO Xinxin. Preparation and damping capacity of three-dimensional network Ti2AlC/Mg matrix composites[J]. Powder Metallurgy Technology, 2023, 41(4): 372-377, 384. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120017 |
The Ti2AlC porous ceramic preforms were prepared by precursor method in this paper, and the Ti2AlC/Mg matrix composites with the dense three-dimensional network structure were prepared by auxiliary pressure infiltration process. The microstructure and phase composition of the composites were investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), and the damping performance of the composites was tested by vibration analyzer. The results show that, the composites have the two-scale three-dimensional network structure at the macro and micro levels. At the constant temperature, the maximum loss tangent values of the composites are 0.13 and 0.15 at 1 Hz and 10 Hz, respectively, increasing by about 30% and 67% compared with AZ91D, the damping performance is enhanced. Under the constant strain, the composites have the maximum loss tangent value at the highest test temperature. In the two test conditions, both of the storage modulus is higher than that of AZ91D. From the view of the balance between internal friction and storage modulus, the composites not only have the wider application temperature range, but also have the better damping-strength balance.
[1] |
冯艳, 陈超, 彭超群, 等. 镁基复合材料的研究进展. 中国有色金属学报, 2017, 27(12): 2385
Feng Y, Chen C, Peng C Q, et al. Research progress on magnesium matrix composites. Chin J Nonferrous Met, 2017, 27(12): 2385
|
[2] |
张士卫. 阻尼镁合金的研究与应用综述. 金属世界, 2019(4): 5
Zhang S W. Research and application summary of damping magnesium alloys. Met World, 2019(4): 5
|
[3] |
Amadori S, Catania G. An effective coating material solution and modeling technique for damping oriented design of thin walled mechanical components. Compos Struct, 2018, 191(5): 251
|
[4] |
Wan D Q, Hu Y L, Ye S T, et al. Effect of alloying elements on magnesium alloy damping capacities at room temperature. Int J Miner Metall Mater, 2019, 26(6): 760 DOI: 10.1007/s12613-019-1789-6
|
[5] |
万迪庆, 胡莹琳, 叶舒婷, 等. 镁基高阻尼材料加工工艺研究现状及展望. 功能材料, 2018, 49(5): 5035
Wan D Q, Hu Y L, Ye S T, et al. Research status and prospects of high damping magnesium matrix materials. Funct Mater, 2018, 49(5): 5035
|
[6] |
肖华强, 陈禹伽, 赵辉, 等. 镁基阻尼复合材料的研究进展. 特种铸造及有色合金, 2018, 38(4): 382
Xiao H Q, Chen Y J, Zhao H, et al. Research progress in magnesium matrix damping composites. Spec Cast Nonferrous Alloys, 2018, 38(4): 382
|
[7] |
李凡国, 于思荣, 袁明. Mg2Si/AZ91D复合材料阻尼性能. 复合材料学报, 2017, 34(9): 1997
Li F G, Yu S R, Yuan M. Damping capacity of Mg2Si/AZ91D composites. Acta Mater Compos Sin, 2017, 34(9): 1997
|
[8] |
刘恩洋, 于思荣, 赵严, 等. 漂珠/AZ91D复合材料微观组织与性能. 稀有金属材料与工程, 2017, 46(11): 3298
Liu E Y, Yu S R, Zhao Y, et al. Microstructure and properties of fly ash cenosphere/AZ91D composites. Rare Met Mater Eng, 2017, 46(11): 3298
|
[9] |
阮爱杰, 马立群, 潘安霞, 等. 粉末冶金法SiCp/Mg基复合材料的力学性能和阻尼性能研究. 轻合金加工技术, 2012, 40(2): 50 DOI: 10.3969/j.issn.1007-7235.2012.02.012
Ruan A J, Ma L Q, Pan A X, et al. Study on mechanical property and damping capacity of SiC particle reinforced magnesium matrix composite produced by powder metallurgy. Light Alloy Fab Technol, 2012, 40(2): 50 DOI: 10.3969/j.issn.1007-7235.2012.02.012
|
[10] |
王勇, 周吉学, 夏金环, 等. 粉末冶金法AlN颗粒增强镁铝基复合材料的阻尼性能. 西安工业大学学报, 2018, 38(6): 620
Wang Y, Zhou J X, Xia J H, et al. Damping capacity of AlN particles reinforced magnesium−aluminum matrix composites by powder metallurgy. J Xi'an Technol Univ, 2018, 38(6): 620
|
[11] |
姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能. 金属学报, 2019, 55(1): 141
Yao Y T, Chen L Q, Wang W G. Damping capacities of (B4C+Ti) hybrid reinforced Mg and AZ91D composites processed by in situ reactive infiltration technique. Acta Metall Sinica, 2019, 55(1): 141
|
[12] |
Wu Y W, Wu K, Deng K K, et al. Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles. Mater Sci Eng A, 2010, 527(26): 6816 DOI: 10.1016/j.msea.2010.07.050
|
[13] |
Wu Y W, Wu K, Deng K K, et al. Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles. Mater Des, 2010, 31(10): 4862 DOI: 10.1016/j.matdes.2010.05.033
|
[14] |
Wu Y W, Wu K, Deng K K, et al. Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite. J Alloys Compd, 2010, 506: 688 DOI: 10.1016/j.jallcom.2010.07.043
|
[15] |
Amini S, Barsoum M W. On the effect of texture on the mechanical and damping properties of nanocrystalline Mg-matrix composites reinforced with MAX phases. Mater Sci Eng A, 2010, 527(16): 3707
|
[16] |
Anasori B, Caspi E, Barsoum M W. Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. Mater Sci Eng A, 2014, 618: 511 DOI: 10.1016/j.msea.2014.09.039
|
[17] |
Mei D, Lamaka S V, Feiler C, et al. The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective. Corros Sci, 2019, 153: 258
|
[18] |
Shamma M, Caspi E, Anasori B, et al. In situ neutron diffraction evidence for fully reversible dislocation motion in highly textured polycrystalline Ti2AlC samples. Acta Mater, 2015, 98: 51
|
[19] |
陈禹伽. 双尺度三维网络Ti2AlC/Mg基复合材料制备及其阻尼性能研究[学位论文]. 贵阳: 贵州大学, 2019
Chen Y J. Preparation and Damping Capacities of Ti 2AlC/Mg Based Composites with Two-Scale Three-Dimensional Network [Dissertation]. Guiyang: Guizhou University, 2019
|
[20] |
冀树军. 有机泡沫浸渍法(PSD)及发泡凝胶法(FGC)制备SiC基泡沫陶瓷过滤材料的研究[学位论文]. 长沙: 中南大学, 2013
Ji S J. Study on Preparation of SiC-Based Ceramic Foam Filter Material by Organic Foam Dipping Method (PSD) and Foam Gel Method (FGC) [Dissertation]. Changsha: Central South University, 2013
|