AdvancedSearch
CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110009
Citation: CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110009

Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints

More Information
  • The effective joining between the FeAl intermetallic compounds and the 316 stainless steels was realized by the combination of thermal explosion reaction and powder metallurgy. The effect of joining temperature (700, 800, 900 ℃) on the interface composition and mechanical properties were studied. The results show that, the temperature of FeAl reaction layer rises to 1050 ℃ instantaneously when it is heated to 637 ℃, and the obvious thermal explosion reaction occurs, accompanied by the intense heat release lasting about 15 s. With the increase of joining temperature from 700 ℃ to 900 ℃, the interface is composed of Fe-316SS and 316SS(Al) alternately, which is transformed into FeAl-316SS(Al)-316SS. Sound metallurgical bonding is formed at all these three temperatures. When the joining temperature is 800 ℃, the shear strength reaches 75 MPa.

  • [1]
    王优, 邓楠, 佟振峰, 等. 铁铝金属间化合物及其涂层制备的研究进展. 材料导报, 2021, 35(21): 21221

    Wang Y, Deng N, Tong Z F, et al. The research progress on preparation of Fe−Al intermetallic compounds and coatings. Mater Rep, 2021, 35(21): 21221
    [2]
    文雄, 黄本生, 余鸿雁, 等. Fe−Al−x%Si金属间化合物多孔材料的制备及抗氧化性能研究. 有色金属工程, 2020, 10(9): 7

    Wen X, Huang B S, Yu H Y, et al. Preparation and antioxidation properties of Fe−Al−x%Si intermetallic compound porous materials. Nonferrous Met Eng, 2020, 10(9): 7
    [3]
    周瑾, 白亚平, 成超, 等. B2结构FeAl金属间化合物研究现状. 铸造技术, 2019, 40(8): 858

    Zhou J, Bai Y P, Cheng C, et al. Research status of FeAl intermetallic compounds with B2 structure. Foundry Technol, 2019, 40(8): 858
    [4]
    郭建亭, 周兰章, 李谷松. 高温结构金属间化合物及其强韧化机理. 中国有色金属学报, 2011, 21(1): 1

    Guo J T, Zhou L Z, Li G S. High temperature structural intermetallics and their strengthening-softening mechanisms. Chin J Nonferrous Met, 2011, 21(1): 1
    [5]
    Deevi S C. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog Mater Sci, 2021, 118: 100769
    [6]
    王凡, 刘冠颖, 杨军军, 等. 金属过滤材料在高温除尘中的应用与发展. 粉末冶金技术, 2018, 36(3): 230

    Wang F, Liu G Y, Yang J J, et al. Application and development of metal filter materials in high-temperature gas filtration. Powder Metall Technol, 2018, 36(3): 230
    [7]
    高海燕, 贺跃辉, 沈培智, 等. FeAl多孔材料与不锈钢的焊接. 中国有色金属学报, 2009, 19(1): 90

    Gao H Y, He Y H, Shen P Z, et al. Welding of FeAl porous material and stainless steel. Chin J Nonferrous Met, 2009, 19(1): 90
    [8]
    李亚江, 王娟. Fe3Al/18-8异种材料真空扩散焊工艺研究. 材料科学与工艺, 2004(1): 45

    Li Y J, Wang J. Vacuum diffusion welding technology of Fe3Al/18-8 dissimilar materials. Mater Sci Technol, 2004(1): 45
    [9]
    Torun O, Celikyürek I, Baksan B. Friction welding of cast Fe−28Al alloy. Intermetallics, 2011, 19(7): 1076
    [10]
    Shi Z M, Cao J B, Han F S. Preparation and characterization of Fe−Al intermetallic layer on the surface of T91 heat-resistant steel. J Nucl Mater, 2014, 447(1-3): 77
    [11]
    黄广棋, 张桂凯, 罗朝以, 等. Fe−Al金属间化合物氢脆效应研究现状. 材料导报, 2018, 32(11): 1878 DOI: 10.11896/j.issn.1005-023X.2018.11.015

    Huang G Q, Zhang G K, Luo C Y, et al. A review on hydrogen embrittlement of Fe−Al intermetallics. Mater Rev, 2018, 32(11): 1878 DOI: 10.11896/j.issn.1005-023X.2018.11.015
    [12]
    Wang J H, Cheng J, Bai P K, et al. Investigation of joining Al−C−Ti cermets and Ti6Al4V by combustion synthesis. Mater Sci Eng B, 2012, 177(19): 1703
    [13]
    Matsuda T, Maruko T, Ogura T, et al. Self-heating bonding of A5056 aluminum alloys using exothermic heat of combustion synthesis. Mater Des, 2017, 113: 109
    [14]
    Cai X P, Ren X R, Sang C C, et al. Dissimilar joining mechanism, microstructure and properties of Ni to 316 stainless steel via Ni−Al thermal explosion reaction. Mater Sci Eng A, 2021, 807: 140868
    [15]
    袁若寒, 蒋朋. 氮化硅铁及其在耐火材料中的应用. 粉末冶金技术, 2019, 37(1): 74

    Yuan R H, Jiang P. Ferrosilicon nitride and its application in refractory materials. Powder Metall Technol, 2019, 37(1): 74
    [16]
    Borkar T, Nag S, Ren Y, et al. Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites. J Alloys Compd, 2014, 617: 933
    [17]
    Thiele M, Hermann M, Müller C, et al. Reactive and non-reactive preparation of B6O materials by FAST/SPS. J Eur Ceram Soc, 2015, 35(1): 47
    [18]
    Jiao X Y, Liu Y N, Cai X P, et al. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review. J Mater Sci, 2021, 56: 11605
    [19]
    Lee W B, Schmuecker M, Mercardo U A, et al. Interfacial reaction in steel–aluminum joints made by friction stir welding. Scr Mater, 2006, 55(4): 355
    [20]
    李星宇, 章林, 秦明礼, 等. 气流磨处理对烧结钨粉微观组织和力学性能的影响. 粉末冶金技术, 2021, 39(3): 251

    Li X Y, Zhang L, Qin M L, et al. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders. Powder Metall Technol, 2021, 39(3): 251
    [21]
    Xu P Z, Hua X M, Shen C, et al. Formation of Fe5Si3 precipitate in the Fe2Al5 intermetallic layer of the Al/steel dissimilar arc welding joint: A transmission electron microscopy (TEM) study. Mater Charact, 2021, 178: 111236
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return