AdvancedSearch
DONG Di, KANG Ju-lei, XIONG Ning, WANG Cheng-yang. Effects of HfC content on microstructure and mechanical properties of titanium zirconium molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030021
Citation: DONG Di, KANG Ju-lei, XIONG Ning, WANG Cheng-yang. Effects of HfC content on microstructure and mechanical properties of titanium zirconium molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030021

Effects of HfC content on microstructure and mechanical properties of titanium zirconium molybdenum alloys

More Information
  • Corresponding author:

    DONG Di, E-mail: dongdi@attl.cn

  • Received Date: March 07, 2021
  • Available Online: May 26, 2021
  • HfC particles with the mass fraction of 0, 0.25%, 0.50% and 1.00% were added into the titanium zirconium molybdenum (TZM) alloy powders, respectively. The composite reinforced molybdenum alloys were prepared by the powder metallurgy combined with the rolling deformation. The effects of the HfC particles on the microstructure and mechanical properties of the TZM alloys were studied by the metallographic analysis, the scanning electron microscopy, the energy spectrum analysis, and the mechanical properties tests. The results show that, the addition of HfC particles can inhibit the growth of TZM grains during the sintering process, however, when the mass fraction of HfC particles exceeds 0.50%, the inhibitory effect is weakened. When the mass fraction of HfC particles is 0.25%, the TZM alloys show the strongest tensile strength at room temperature and high temperature, the highest Vickers hardness, and the best plasticity.
  • [1]
    吴新光, 杜晓斌. TZM合金及其特性. 中国钼业, 2005, 29(5): 30 DOI: 10.3969/j.issn.1006-2602.2005.05.007

    Wu X G, Du X B. TZM alloy and its properties. China Molybdenum Ind, 2005, 29(5): 30 DOI: 10.3969/j.issn.1006-2602.2005.05.007
    [2]
    崔超鹏, 曹睿, 朱向炜. 稀土氧化物对钼合金高温变形抗力的影响. 宜宾学院学报, 2020, 20(12): 24

    Cui C P, Cao R, Zhu X W. Effect of rare earth oxide on high temperature deformation resistance of molybdenum alloy. J Yibin Univ, 2020, 20(12): 24
    [3]
    董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304

    Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304
    [4]
    徐克玷. 钼的材料科学与工程. 北京: 冶金工业出版社, 2014

    Xu K D. Material Science and Engineering of Molybdenum. Beijing: Metallurgical Industry Press, 2014
    [5]
    董帝, 黄洪涛, 熊宁, 等. 钼及钼合金在核反应堆中的应用. 中国钼业, 2018, 42(4): 6

    Dong D, Huang H T, Xiong N, et al. Application of molybdenum and molybdenum alloys in nuclear reactors. China Molybdenum Ind, 2018, 42(4): 6
    [6]
    刘刚, 张国君, 江峰, 等. 高性能钼合金的微观组织设计制备与性能优化. 中国材料进展, 2016, 35(3): 205

    Liu G, Zhang G J, Jiang F, et al. Microstructural design and property optimization of Mo alloys with high performance. Mater China, 2016, 35(3): 205
    [7]
    罗来马, 周宇芬, 章宇翔, 等. 钼基材料的强韧化技术研究现状和发展趋势. 中国有色金属学报, 2019, 29(3): 525

    Luo L M, Zhou Y F, Zhang Y X, et al. Current status and development trend of toughening technology of molybdenum-based materials. Chin J Nonferrous Met, 2019, 29(3): 525
    [8]
    Yang Z W, Lin J M, Zhang J F, et al. An effective approach for bonding of TZM and Nb–Zr system: Microstructure evolution, mechanical properties, and bonding mechanism. J Mater Sci Technol, 2021, 84: 16 DOI: 10.1016/j.jmst.2020.09.054
    [9]
    Fasoranti O, Ostrowski E T, Koel B E. Thermal stability of oxidized ultrathin Li films on TZM for plasma facing components. J Nuclear Mater, 2020, 543: 152587
    [10]
    于志涛, 王快社, 胡平, 等. 低氧TZM合金研究进展. 材料导报, 2015, 29(1): 92 DOI: 10.11896/j.issn.1005-023X.2015.01.016

    Yu Z T, Wang K S, Hu P, et al. Progress of low oxygen TZM molybdenum alloy. Mater Rev, 2015, 29(1): 92 DOI: 10.11896/j.issn.1005-023X.2015.01.016
    [11]
    董帝, 刘国辉, 熊宁, 等. 一种多元复合强化钼合金及其制备方法: 中国专利, 201910857792.7. 2019-11-15.

    Dong D, Liu G H, Xiong N, et al. A Method of Multi-Element Composite Reinforced Molybdenum Alloys and Its Preparation: China Patent, 201910857792.7. 2019-11-15.
    [12]
    Siller M, Lang D, Schatte J, et al. Interaction of precipitation, recovery and recrystallization in the Mo–Hf–C alloy MHC studied by multipass compression tests. Int J Refract Met Hard Mater, 2018, 73: 199 DOI: 10.1016/j.ijrmhm.2018.02.014
    [13]
    李辉, 胡平, 邢海瑞, 等. 钼合金高温力学性能研究现状综述. 功能材料, 2020, 51(10): 10044 DOI: 10.3969/j.issn.1001-9731.2020.10.007

    Li H, Hu P, Xing H R, et al. A survey of high temperature mechanical properties of molybdenum alloys. J Funct Mater, 2020, 51(10): 10044 DOI: 10.3969/j.issn.1001-9731.2020.10.007
    [14]
    王承阳, 董帝, 腾宇阔, 等. 退火工艺对MHC钼合金板材组织和力学性能的影响. 金属热处理, 2018, 43(7): 180

    Wang C Y, Dong D, Teng Y K, et al. Effect of annealing on microstructure and mechanical properties of MHC molybdenum alloy sheet. Heat Treat Met, 2018, 43(7): 180
    [15]
    赵虎, 杨秦莉, 付静波, 等. C含量对PM-MHC合金棒组织及力学性能影响研究. 中国钼业, 2020, 44(1): 45

    Zhao H, Yang Q L, Fu J B, et al. Effect of carbon content on microstructure and mechanical properties of PM-MHC alloy rods. China Molybdenum Ind, 2020, 44(1): 45
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return