AdvancedSearch
LIU Jian, YE Fei, WANG Xu-qing, PENG Zi-chao, LUO Xue-jun. Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li[J]. Powder Metallurgy Technology, 2021, 39(6): 499-504. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010004
Citation: LIU Jian, YE Fei, WANG Xu-qing, PENG Zi-chao, LUO Xue-jun. Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li[J]. Powder Metallurgy Technology, 2021, 39(6): 499-504. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010004

Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li

More Information
  • Corresponding author:

    WANG Xu-qing, E-mail: wxqcjr@163.com

  • Received Date: January 10, 2021
  • Available Online: April 11, 2021
  • P/M superalloy Udimet720Li specimens were solutioned and quenched at the different cooling rates in gas quenching furnace, following by the double aging treatment. The microstructures and elevated temperature tensile properties at 650 ℃ were investigated, and the γ′ precipitation behavior and strengthening mechanism were analysed. The effect of cooling rates on the microstructures and properties of γ′ phase were discussed. Results show that the secondary γ′ phases mainly precipitate between 900 ℃ and 1000 ℃ for the P/M superalloy Udimet720Li, and the size of the secondary γ′ phases are inversely proportional to the cooling rates. The secondary γ′ phase interacts with the dislocations by shearing mechanism, enhancing the strength of P/M superalloy Udimet720Li. The strengthening effect increases with the decrease of the secondary γ′ phase size. To meet the strength requirement in practical application, the cooling rate should be more than 100 ℃/min. Therefore, the recommended solution cooling path for P/M superalloy Udimet720Li is shown as follow: the cooling rate should be slow to reduce the quenching stress above 1000 ℃, then the specimen can be quenched in oil at 1000 ℃ to obtain enough strength.
  • [1]
    Aba-Perea P E, Pirling T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys. Mater Des, 2016, 89: 856 DOI: 10.1016/j.matdes.2015.09.152
    [2]
    Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: the effect of microstructure on properties. Mater Sci Eng A, 1999, 259(1): 85 DOI: 10.1016/S0921-5093(98)00867-3
    [3]
    邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006(3): 244 DOI: 10.3969/j.issn.1005-5053.2006.03.051

    Zou J W, Wang W X. Development and application of P/M superalloy. J Aeronaut Mater, 2006(3): 244 DOI: 10.3969/j.issn.1005-5053.2006.03.051
    [4]
    王晓峰, 杨杰, 邹金文, 等. FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究. 粉末冶金技术, 2019, 37(4): 264

    Wang X F, Yang J, Zou J W, et al. Study on oxide inclusions of nickel-based P/M superalloy FHG96 by computed tomography technology. Powder Metall Technol, 2019, 37(4): 264
    [5]
    田高峰, 陈阳, 汪煜. 梯度组织FGH96合金残留枝晶区的组织特征研究. 粉末冶金技术, 2018, 36(6): 403

    Tian G F, Chen Y, Wang Y. Research on microstructure characterization in residual dendrite zones of FGH96 alloy with gradient microstructure. Powder Metall Technol, 2018, 36(6): 403
    [6]
    周晓明, 冯业飞, 曾维虎, 等. 时效处理对粉末高温合金惯性摩擦焊接头室温拉伸行为的影响. 粉末冶金技术, 2021, 39(1): 41

    Zhou X M, Feng Y F, Zeng W H, et al. Effect of aging treatment on the behavior of room temperature tensile of P/M superalloys used for inertia friction welding joints. Powder Metall Technol, 2021, 39(1): 41
    [7]
    Goff S D L, Couturier R, Guétaz L, et al. Effect of the microstructure on the creep behavior of PM Udimet 720 superalloy—experiments and modeling. Mater Sci Eng A, 2004, 387-389: 599 DOI: 10.1016/j.msea.2004.01.094
    [8]
    Luo J, Bowen P. Statistical aspects of fatigue behaviour in a PM Ni-base superalloy Udimet 720. Acta Mater, 2003, 51(12): 3521 DOI: 10.1016/S1359-6454(03)00171-X
    [9]
    Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review. Int J Fatigue, 2020, 141: 105887 DOI: 10.1016/j.ijfatigue.2020.105887
    [10]
    Luo J, Bowen P. Small and long fatigue crack growth behaviour of a PM Ni-based superalloy, Udimet 720. Int J Fatigue, 2004, 26(2): 113 DOI: 10.1016/S0142-1123(03)00139-7
    [11]
    Goto M, Knowles D M. Initiation and propagation behaviour of microcracks in Ni-base superalloy Udimet 720 Li. Eng Fract Mech, 1998, 60(1): 1 DOI: 10.1016/S0013-7944(98)00003-4
    [12]
    Deng W K, Zhang D, Wu H Y, et al. Prediction of yield strength in a polycrystalline nickel base superalloy during interrupt cooling. Scr Mater, 2020, 183: 139 DOI: 10.1016/j.scriptamat.2020.03.034
    [13]
    Li J, Zhao Z Y, Bai P K, et al. Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments. J Alloys Compd, 2019, 772: 861 DOI: 10.1016/j.jallcom.2018.09.200
    [14]
    Li M, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy. J Alloys Compd, 2018, 732: 765 DOI: 10.1016/j.jallcom.2017.10.263
    [15]
    He D G, Lin Y C, Tang Y, et al. Influences of solution cooling on microstructures, mechanical properties and hot corrosion resistance of a nickel-based superalloy. Mater Sci Eng A, 2019, 746: 372 DOI: 10.1016/j.msea.2019.01.015
    [16]
    张磊, 田素贵. 长期时效对FGH95镍基粉末高温合金γ'相及晶格常数的影响. 粉末冶金技术, 2019, 37(3): 191

    Zhang L, Tian S G. Effect of long-term aging on γ′ phase and lattice constant of FGH95 P/M Ni-based superalloy. Powder Metall Technol, 2019, 37(3): 191
    [17]
    于秋颖, 董建新, 张麦仓, 等. 难变形高温合金GH720Li平衡析出相的热力学计算. 稀有金属材料与工程, 2010, 39(5): 857

    Yu Q Y, Dong J X, Zhang M C, et al. Thermodynamic calculation on equilibrium precipitated phases in GH720Li superalloy. Rare Met Mater Eng, 2010, 39(5): 857
    [18]
    Kuo Y L, Horikawa S, Kakehi K. The effect of interdendritic δ phase on the mechanical properties of alloy 718 built up by additive manufacturing. Mater Des, 2017, 116: 411 DOI: 10.1016/j.matdes.2016.12.026
    [19]
    Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy. Mater Sci Eng A, 2019, 751: 311 DOI: 10.1016/j.msea.2019.02.054
    [20]
    Peng Z C, Tian G F, Jiang J, et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy. Mater Sci Eng A, 2016, 676: 441 DOI: 10.1016/j.msea.2016.08.101
    [21]
    Reed R. The Superalloys: Fundamentals and Applications. London: Cambridge University Press, 2006
    [22]
    刘健, 彭钦, 谢建新. 选区激光熔化René88DT高温合金的晶粒组织及冶金缺陷调控. 金属学报, 2021, 57(2): 191

    Liu J, Peng Q, Xie J X. Grain structure and metallurgical defects regulation of selective laser melted René 88DT superalloy. Acta Metall Sinica, 2021, 57(2): 191
    [23]
    罗学军, 王晓峰, 马国军, 等. 热处理对FGH95合金组织和性能的影响研究. 粉末冶金技术, 2012, 30(1): 12 DOI: 10.3969/j.issn.1001-3784.2012.01.003

    Luo X J, Wang X F, Ma G J, et al. Effect of heat treatment on microstructure and properties of FGH95 alloy. Powder Metall Technol, 2012, 30(1): 12 DOI: 10.3969/j.issn.1001-3784.2012.01.003
    [24]
    钟治勇, 刘建涛, 张义文, 等. 固溶与时效温度对新型粉末高温合金组织和性能的影响. 粉末冶金工业, 2021, 31(1): 56

    Zhong Z Y, Liu J T, Zhang Y W, et al. Effect of solution and aging temperature on microstructure and properties of a new powder superalloy. Powder Metall Ind, 2021, 31(1): 56
  • Related Articles

    [1]Research Progress on Ultra-High Strength Aluminum Matrix Composites[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024120013
    [2]ZHENG Haifei, YIN Yanguo, LI Rongrong. Tribological properties of iron-based bearing materials prepared through FeS surface modification[J]. Powder Metallurgy Technology, 2024, 42(5): 516-524. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050007
    [3]FENG Xiaowei, SI Anheng, FENG Bo, LI Daren. Fabrication, microstructure, and properties of W–Cu graded composites[J]. Powder Metallurgy Technology, 2024, 42(3): 283-289. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020002
    [4]DING Xiaolong, YANG Zhaofang, ZHENG Hejing. Effect of ZrP on properties of CuBi-steel-backed double-layer metal composites[J]. Powder Metallurgy Technology, 2024, 42(2): 128-134. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100013
    [5]Progress in the study of metal-based composite foam material matrix and mechanical properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040002
    [6]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [7]YU Chen-xu. Fabrication, microstructure, and properties of W–Re/graphite composites[J]. Powder Metallurgy Technology, 2021, 39(5): 417-422. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030024
    [8]SHI Qin, ZUO Wen-yan, ZHAO Guang-xia. Preparation and properties research of Cu-based electrical contact composites containing Cr and NbSe2[J]. Powder Metallurgy Technology, 2020, 38(6): 455-464. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050005
    [9]SHI Qin, ZHU He-jun. Effects of Ag/RGO composites as lubricant additives on the tribological properties of lubricating oil[J]. Powder Metallurgy Technology, 2020, 38(4): 257-261, 274. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020002
    [10]Study of the C/C composites' tribological properties[J]. Powder Metallurgy Technology, 2004, 22(3): 147-150. DOI: 10.3321/j.issn:1001-3784.2004.03.005
  • Cited by

    Periodical cited type(4)

    1. 蒋正权,杜新春,金业铭,余来贵,闫明明,仝玉萍,郝用兴,张晟卯,张平余. 石墨烯及其复合纳米微粒作为润滑添加剂的研究进展. 机械工程学报. 2023(21): 293-312 .
    2. 秦建,刘天霞,王志燕,王建,王继寒. 石墨烯基复合材料润滑添加剂的应用研究进展. 宁夏工程技术. 2022(01): 92-96 .
    3. 刘晓亮,孙胃涛,章健. 超声振动状态下PI和PTFE基复合材料的摩擦特性. 工程塑料应用. 2022(06): 1-6+13 .
    4. 陈广炎,赵军,何永勇,雒建斌. 石墨烯润滑添加剂合成与结构调控. 摩擦学学报. 2021(05): 758-772 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1024) PDF downloads (66) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return