AdvancedSearch
DING Xiaolong, YANG Zhaofang, ZHENG Hejing. Effect of ZrP on properties of CuBi-steel-backed double-layer metal composites[J]. Powder Metallurgy Technology, 2024, 42(2): 128-134. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100013
Citation: DING Xiaolong, YANG Zhaofang, ZHENG Hejing. Effect of ZrP on properties of CuBi-steel-backed double-layer metal composites[J]. Powder Metallurgy Technology, 2024, 42(2): 128-134. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100013

Effect of ZrP on properties of CuBi-steel-backed double-layer metal composites

More Information
  • Corresponding author:

    DING Xiaolong, E-mail: dxl_9211@163.com

  • Received Date: November 01, 2021
  • Available Online: January 05, 2022
  • The copper-bismuth (CuBi)-steel-backed double-layer metal composite plates were prepared by the sintering and press-rolling composite technology, the effect of zirconium phosphate (ZrP) on the bonding strength, hardness, and tribological properties of the CuBi-steel-backed composite plates was studied. In the results, the addition of ZrP can effectively improve the anti-friction and wear resistance of the CuBi-steel-backed composite plates and enhance the load-bearing capacity. As the ZrP mass fraction increases, the bonding strength of the CuBi-steel-backed composite plates gradually decreases, and the hardness first increases and then decreases. In the constant speed and load test, compared with the CuBi-steel-backed composite plates without ZrP, the addition of 2% and 4% ZrP by mass can effectively improve the friction and wear resistance of the CuBi-steel-backed composite plates, reduce the friction coefficient of the friction pair, and rise the surface temperature. In the constant-speed variable-load test, the addition of ZrP can significantly improve the frictional bearing capacity of the CuBi-steel-backed double-layer materials. Under the condition of end face oil circulation, the limit PV value (friction pair contact surface pressure × friction linear velocity) of the CuBi-steel-backed composite plates by adding ZrP with the mass fraction 4% reaches 14 MPa∙m∙s‒1, which is about 75% higher than that without ZrP (8 MPa∙m∙s‒1).

  • [1]
    雷沙沙, 刘洪军. 铜基复合材料制备工艺的研究进展. 机械工程材料, 2021, 45(10): 13

    Lei S S, Liu H J. Research progress on the preparation technology of copper-based composite materials. Mater Mech Eng, 2021, 45(10): 13
    [2]
    樊舒凯. 铜基石墨自润滑复合材料界面性能调控及其摩擦学性能研究[学位论文]. 兰州: 兰州理工大学, 2021

    Fan S K. Study on the Control of Interface Performance and Tribological Properties of Copper-Based Graphite Self-Lubricating Composites [Dissertation]. Lanzhou: Lanzhou University of Technology, 2021
    [3]
    Mushtaq S, Wani M F. Self-lubricating tribological characterization of lead free Fe‒Cu based plain bearing material. J Tribol, 2017, 12: 18
    [4]
    尹延国, 林福东. 无铅的铜铋轴承材料摩擦学特性研究. 金属功能材料, 2010, 17(5): 5

    Yin Y G, Lin F D. Study on tribological characteristics of lead-free copper bismuth bearing materials. Met Funct Mater, 2010, 17(5): 5
    [5]
    Zhang K Y, Yin Y G, Zhang G T, et al. Tribological properties of FeS‒Cu copper-based self-lubricating bearing materials prepared by mechanical alloying. Tribol Trans, 2020, 63(2): 197 DOI: 10.1080/10402004.2019.1668515
    [6]
    方小亮, 郑合静. 铜基粉末冶金摩擦材料的应用及展望. 粉末冶金技术, 2020, 38(4): 313

    Fang X L, Zheng H J. Application and prospect of copper-based powder metallurgy friction materials. Powder Metall Technol, 2020, 38(4): 313
    [7]
    郑合静, 杨兆方, 丁晓龙, 等. 层状α–磷酸锆改性聚四氟乙烯摩擦磨损性能. 工程塑料应用, 2021, 49(11): 126

    Zheng H J, Yang Z F, Ding X L, et al. Friction and wear properties of layered α-zirconium phosphate modified polytetrafluoroethylene. Eng Plast Appl, 2021, 49(11): 126
    [8]
    李佳欣, 赖学军, 叶振兴, 等. 层状纳米磷酸锆的制备及催化成炭阻燃聚合物的研究进展. 高分子材料科学与工程, 2019, 35(1): 183

    Li J X, Lai X J, Ye Z X, et al. Progress in preparation of nano-layered phosphate zirconium and its catalyzing carbonization in flame retardant polymer. Polym Mater Sci Eng, 2019, 35(1): 183
    [9]
    代莹静, 牛文星, 张效胜, 等. 层状磷酸锆作为润滑脂添加剂的摩擦性能. 石油学报(石油加工), 2018, 34(4): 776

    Dai Y J, Niu W X, Zhang X S, et al. Tribological properties of layered zirconium phosphate as a grease additive. Acta Pet Sinica (Pet Process Ind), 2018, 34(4): 776
    [10]
    Xiao H, Liu S. Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications. Mater Des, 2018, 155: 19 DOI: 10.1016/j.matdes.2018.05.041
    [11]
    尹延国, 唐红跃, 焦明华, 等. 无铅含镍铜-钢双金属轴承材料的摩擦学特性. 中国有色金属学报, 2017(6): 1189

    Yin Y G, Tang H Y, Jiao M H, et al. Tribological properties of lead-free nickel-containing copper-steel bimetallic bearing materials. Chin J Nonferrous Met, 2017(6): 1189
    [12]
    王立全, 张向军, 张斌, 等. 摩擦条件对铜基粉末冶金材料摩擦磨损性能影响的研究. 热加工工艺, 2020, 49(18): 26

    Wang L Q, Zhang X J, Zhang B, et al. Research on the influence of friction conditions on the friction and wear properties of copper-based powder metallurgy materials. Hot Working Technol, 2020, 49(18): 26
    [13]
    Torres H, Rodríguez R M, Prakash B. Tribological behaviour of self-lubricating materials at high temperatures. Int Mater Rev, 2018, 63(5): 309 DOI: 10.1080/09506608.2017.1410944
    [14]
    胡铮, 张楠, 张万昊, 等. 石墨含量对铜基摩擦材料摩擦磨损性能的影响. 粉末冶金技术, 2020, 38(6): 409

    Hu Z, Zhang N, Zhang W H, et al. The influence of graphite content on the friction and wear properties of copper-based friction materials. Powder Metall Technol, 2020, 38(6): 409
    [15]
    武志涛, 侯凯明, 王金清, 等. α-ZrP层状纳米片的修饰改性及其摩擦学性能. 摩擦学学报, 2020(1): 89

    Wu Z T, Hou K M, Wang J Q, et al. Modification and tribological properties of α-ZrP layered nanosheets. Chin J Tribol, 2020(1): 89
    [16]
    王静轩, 王嘉棋, 尹延国, 等. FeS/Cu-Bi铜基滑动轴承材料的干摩擦特性. 轴承, 2020(3): 39 DOI: 10.19533/j.issn1000-3762.2020.03.010

    Wang J X, Wang J Q, Yin Y G, et al. Dry friction characteristics of FeS/Cu‒Bi copper-based sliding bearing materials. Bearings, 2020(3): 39 DOI: 10.19533/j.issn1000-3762.2020.03.010
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return