AdvancedSearch
ZHENG Haifei, YIN Yanguo, LI Rongrong. Tribological properties of iron-based bearing materials prepared through FeS surface modification[J]. Powder Metallurgy Technology, 2024, 42(5): 516-524. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050007
Citation: ZHENG Haifei, YIN Yanguo, LI Rongrong. Tribological properties of iron-based bearing materials prepared through FeS surface modification[J]. Powder Metallurgy Technology, 2024, 42(5): 516-524. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050007

Tribological properties of iron-based bearing materials prepared through FeS surface modification

More Information
  • Corresponding author:

    ZHENG Haifei, E-mail: 2876244861@qq.com

  • Received Date: May 13, 2024
  • Accepted Date: May 13, 2024
  • Available Online: June 05, 2024
  • Iron-base bearing materials were prepared by powder metallurgy, using Fe and C powders as raw materials, FeS and nickel-plated FeS as solid lubricants, respectively. The effects of FeS and nickel-plated FeS on the microstructure, mechanical properties, and tribological properties of iron-based bearing materials were investigated. The results show that the tribological properties of iron-based bearing materials added with FeS are improved, but the interface bonding between FeS and iron-based materials is poor, and it is easy to agglomerate and fall off, which reduces the mechanical properties of iron-based materials and is not conducive to the improvement of anti-friction and wear resistance of the materials. FeS surface modification enhances the interfacial bonding between FeS and matrix, and the density and hardness of the materials are improved. When the 8% nickel-plated FeS (mass fraction) is added, the mechanical properties of the prepared iron-based bearing materials are optimal. Under the dry friction conditions, with the increase of load, the friction coefficient of the iron-based bearing materials containing nickel-plated FeS decreases slightly, the wear amount increases relatively slowly, and the wear surface is enriched with FeS. There are only slight furrows, the transfer film on the surface of the dual parts is highly covered, and the continuity is good. The materials show the good antifriction and wear resistance.

  • [1]
    张楠, 徐岩, 韩明, 等. 铁基粉末冶金摩擦材料高能制动损伤机制. 粉末冶金技术, 2023, 41(3): 275

    Zhang N, Xu Y, Han M, et al. Damage mechanism of Fe-based powder metallurgy friction materials in high energy braking. Powder Metall Technol, 2023, 41(3): 275
    [2]
    刘贵民, 惠阳, 杜建华, 等. 连续高温制动条件下颗粒增强铁基复合材料的摩擦磨损性能. 粉末冶金技术, 2023, 41(1): 63

    Liu G M, Hui Y, Du J H, et al. Friction and wear properties of particle-reinforced iron-based composites under continuous high temperature braking. Powder Metall Technol, 2023, 41(1): 63
    [3]
    李蓉蓉, 尹延国, 张国涛, 等. 以TiH2为造孔剂的球磨铁基含油材料孔隙表征及其摩擦学性能. 润滑与密封, 2020, 45(7): 75 DOI: 10.3969/j.issn.0254-0150.2020.07.012

    Li R R, Yin Y G, Zhang G T, et al. Pore characterization and friction and wear properties of iron-based oil impregnated materials with TiH2 as pore-making agent fabricated by ball milling. Lubr Eng, 2020, 45(7): 75 DOI: 10.3969/j.issn.0254-0150.2020.07.012
    [4]
    张国涛, 尹延国. 铁基含油轴承材料表面硫化改性及摩擦学性能. 中国有色金属学报, 2020, 30(2): 348 DOI: 10.11817/j.ysxb.1004.0609.2020-37519

    Zhang G T, Yin Y G. Surface sulfurization modification and tribological properties of iron-based oil bearing materials. Chin J Nonferrous Met, 2020, 30(2): 348 DOI: 10.11817/j.ysxb.1004.0609.2020-37519
    [5]
    Zhang Y Z, Kovalev A, Meng Y G. Combined effect of boundary layer formation and surface smoothing on friction and wear rate of lubricated point contacts during normal running-in processes. Friction, 2018, 6(3): 274 DOI: 10.1007/s40544-018-0228-4
    [6]
    Gropper D, Wang L, Harvey T. Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol Int, 2016, 94(1): 509
    [7]
    De Oliveira Jr M M, Hammes G, Binder C, et al. Solid lubrication in fluid film lubrication. Lubr Sci, 2018, 30(3): 102 DOI: 10.1002/ls.1408
    [8]
    Dhanasekaran S, Gnanamoorthy R. Dry sliding friction and wear characteristics of Fe–C–Cu alloy containing molybdenum di sulphide. Mater Des, 2006, 28(4): 1135
    [9]
    马文林, 陆龙, 郭鸿儒, 等. Fe–Mo–石墨和Fe–Mo–Ni–石墨的高温摩擦磨损行为. 摩擦学学报, 2013, 33(5): 475

    Ma W L, Lu L, Guo H R, et al. Tribological behavior of Fe–Mo–graphite and Fe–Mo–Ni–graphite composites at elevated temperature. Tribology, 2013, 33(5): 475
    [10]
    Furlan K P, de Assuncao J Z, Paz G, et al. Sintering studies and microstructural evolution of Fe–MoS2 mixtures. Mater Sci Forum, 2014, 3692(802): 415
    [11]
    李蓉蓉, 尹延国, 张开源, 等. 机械合金化FeS/Cu复合材料的摩擦磨损性能. 中国机械工程, 2020, 31(17): 2024

    Li R R, Yin Y G, Zhang K Y, et al. Friction and wear properties of FeS/Cu composite materials fabricated by mechanical alloying. China Mech Eng, 2020, 31(17): 2024
    [12]
    Liu C, Yin Y G, Li C M, et al. Properties of lead-free copper matrix composites prepared through in situ Ni-coated FeS surface modification and mechanical alloying. J Alloys Compd, 2021, 881: 160580 DOI: 10.1016/j.jallcom.2021.160580
    [13]
    尹延国, 陈祥雨, 李蓉蓉, 等. 球磨时间对FeS/铁基合金轴承材料组织与性能的影响. 轴承, 2021(7): 36

    Yin Y G, Chen X Y, Li R R, et al. Effect of ball milling times on structure and properties of FeS-iron-based bearing alloy materials. Bearing, 2021(7): 36
    [14]
    Qiu T X, Pan S Y, Fan C, et al. Effect of Ni-coated MoS2 on microstructure and tribological properties of (Cu–10Sn)-based composites. Trans Nonferrous Met Soc China, 2020, 30(9): 2480 DOI: 10.1016/S1003-6326(20)65394-8
    [15]
    Wang Y R, Gao Y M, Takahashi J, et al. The study of microstructure characterization: Cu modified Cu‒Ni‒graphite composite. Comp Interf, 2020, 27(3): 249 DOI: 10.1080/09276440.2019.1621598
    [16]
    付传起, 李省君, 黄亚忠, 等. 镀铜石墨含量对Fe–25Cu基摩擦材料组织结构及摩擦性能的影响. 表面技术, 2023, 52(2): 245

    Fu C Q, Li S J, Huang Y Z, et al. Effect of copper plated graphite content on microstructure and tribological properties of Fe–25Cu-based friction materials. Surf Technol, 2023, 52(2): 245
    [17]
    Liu C, Yin Y G, Li C M, et al. Preparation and properties of lead-free copper matrix composites by electroless plating and mechanical alloying. Wear, 2022, 488-489: 204164 DOI: 10.1016/j.wear.2021.204164
    [18]
    Li R R, Yin Y G, Zhang K Y, et al. Effects of ball milling and load on transfer film formation of copper-based composites. Ind Lubr Tribol, 2022, 74(9): 1056 DOI: 10.1108/ILT-04-2022-0119
  • Related Articles

    [1]CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018
    [2]LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003
    [3]YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [4]SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003
    [5]SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008
    [6]ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007
    [7]LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
    [8]Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203.
    [9]Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100.
    [10]Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202.
  • Cited by

    Periodical cited type(5)

    1. 王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
    2. 陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
    3. 张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
    4. 张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 . 本站查看
    5. 蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (375) PDF downloads (24) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return