AdvancedSearch
YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
Citation: YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010

Effect of milling time on the particle size distribution and morphology of tungsten powders

More Information
  • Corresponding author:

    XUE Bing, E-mail: xuebswust@hotmail.com

  • Received Date: February 22, 2020
  • Available Online: September 27, 2021
  • The tungsten particles in the different particle size distribution were obtained by changing the ball milling time to increase the volume fraction of tungsten particles in the objective particle size distribution of 5~11 μm, and the influence of ball milling time on the particle size distribution and morphology of tungsten powders was analyzed. The results show that, the tungsten particle size decreases significantly in the initial ball milling for 2 h, and the maximum particle size decreases rapidly from 134 μm to about 20 μm. With the further increase of milling time, the typical particle size distribution parameters of tungsten powders decrease slowly. The morphology of tungsten powders does not change except the decrease of particle size. The agglomeration phenomenon appears after milling for 10 h. Comprehensive analysis shows that, the change of ball milling time has a great influence on the particle size distribution of tungsten powders. When the ball milling time is 8 h, the narrowest particle size distribution of tungsten powders is obtained, and the volume fraction of the tungsten particles in the objective particle size distribution reaches 75%.
  • [1]
    王岗. 超细钨粉及碳化钨粉制备工艺研究[学位论文]. 上海: 上海交通大学, 2009

    Wang G. Research on Preparation of Ultrafine Tungsten Powder and Tungsten Carbide Powder [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2009
    [2]
    谢康德. 难熔金属钨、钼管材的应用及其制备技术研究进展. 硬质合金, 2018, 35(3): 219

    Xie K D. Research progress in application and preparation technology of refractory metal tungsten and molybdenum tubes. Cement Carb, 2018, 35(3): 219
    [3]
    陈铮. 稀土氧化物掺杂纳米钨粉的制备及其性能研究[学位论文]. 北京: 北京科技大学, 2019

    Chen Z. Research on Preparation of Rare Earth Oxide Doped Tungsten Nanopowders and Their Properties [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [4]
    王军. 高性能钨合金制备技术研究现状. 有色金属材料与工程, 2019, 40(4): 53

    Wang J. Research status on preparation techniques of high-performance tungsten alloys. Nonferrous Met Mater Eng, 2019, 40(4): 53
    [5]
    刘辉明, 范景莲, 田家敏, 等. 超细钨粉的研究与应用. 中国钨业, 2009, 24(1): 29 DOI: 10.3969/j.issn.1009-0622.2009.01.008

    Liu H M, Fan J L, Tian J M, et al. The preparation process and application of superfine tungsten powder. China Tungsten Ind, 2009, 24(1): 29 DOI: 10.3969/j.issn.1009-0622.2009.01.008
    [6]
    刘铭哲, 李斌川, 韩庆, 等. 超细碳化钨粉末制备工艺研究进展. 稀有金属与硬质合金, 2019, 47(2): 74

    Liu M Z, Li B C, Han Q, et al. Development of preparation process of ultrafine tungsten carbide powder. Rare Met Cement Carb, 2019, 47(2): 74
    [7]
    彭琳茜. 一种穿爆燃弹用钨合金材料的制备研究[学位论文]. 沈阳: 沈阳理工大学, 2018

    Peng L X. Preparation of Tungsten Alloy for Projectile of Armour-Piercing Explosive Incendiary [Dissertation]. Shenyang: Shenyang Ligong University, 2018
    [8]
    张保红, 王玲, 唐亮亮. SrCO3添加量对钨合金电极材料组织和性能的影响. 粉末冶金技术, 2018, 36(1): 48

    Zhang B H, Wang L, Tang L L. Effect of SrCO3 content by mass on the microstructure and properties of tungsten alloy electrode materials. Powder Metall Technol, 2018, 36(1): 48
    [9]
    李睿. 钨粉颗粒粒度形貌优化及其近终成形[学位论文]. 北京: 北京科技大学, 2018

    Li R. Optimization of Particle Size and Morphology of Tungsten Powder and Near Net Shaping of Tungsten Parts [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
    [10]
    黄冬梅, 王信群, 杨剑. 球磨时间对BC干粉灭火剂形态特征的影响. 中国粉体技术, 2014, 20(1): 1 DOI: 10.3969/j.issn.1008-5548.2014.01.001

    Huang D M, Wang X Q, Yang J. Influence of milling time on morphologic characters of BC dry powder extinguish agents. China Powder Sci Technol, 2014, 20(1): 1 DOI: 10.3969/j.issn.1008-5548.2014.01.001
    [11]
    张晓烨, 钟翔, 陈学刚, 等. 搅拌球磨磨制片状银粉工艺研究. 粉末冶金技术, 2019, 37(2): 134

    Zhang X Y, Zhong X, Chen X G, et al. Research on the process of grinding flake silver powder by ball-stirring mill. Powder Metall Technol, 2019, 37(2): 134
    [12]
    叶原丰, 梁栋. 球磨时间对锰方硼石显微结构和发光特性的影响. 粉末冶金技术, 2019, 37(6): 451

    Ye Y F, Liang D. Effect of milling time on microstructure and luminescent properties of chambersite. Powder Metall Technol, 2019, 37(6): 451
    [13]
    梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al–7Si–0. 3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373

    Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0. 3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373
    [14]
    张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315

    Zhang G Y, Zha W S, Chen X L, et al. Application of mechanical ball-milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315
    [15]
    Chen J, Wang F, Qian Y J. Effect of ball milling parameters on the particle size distribution of magnetic materials. Mod Min, 2015, 31(11): 107
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views (1384) PDF downloads (108) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return