AdvancedSearch
GAO Chun-ping, LUO Tie-gang, LIU Sheng-lin, ZHENG Xue-ping, LI Zhi, FU Nai-ke. Debinding and sintering properties of titanium alloys prepared by powder injection molding[J]. Powder Metallurgy Technology, 2021, 39(5): 410-416. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030018
Citation: GAO Chun-ping, LUO Tie-gang, LIU Sheng-lin, ZHENG Xue-ping, LI Zhi, FU Nai-ke. Debinding and sintering properties of titanium alloys prepared by powder injection molding[J]. Powder Metallurgy Technology, 2021, 39(5): 410-416. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030018

Debinding and sintering properties of titanium alloys prepared by powder injection molding

More Information
  • Corresponding author:

    LUO Tie-gang, E-mail: luotiegang@126.com

  • Received Date: March 04, 2021
  • Available Online: April 06, 2021
  • Complex shaped titanium alloy parts with the high-precision and high performance were prepared by powder injection molding (PIM) technology. High powder loading titanium alloy feedstock by catalytic debinding was prepared by the multi-granularity powders and the multi-component binder with polyformaldehyde (POM) as the main component, the titanium alloy parts were obtained by vacuum sintering. The influencing factors of the catalytic debinding process and the influence of feedstocks ratio on the properties of the sintered samples were studied. The results show that, when the mass proportion of the large (D50=25.28 μm), medium (D50=16.75 μm), and small (D50=12.66 μm) particles is 17:6:2, the tap density of the mixed titanium alloy powders is as high as 55%. Moreover, the better catalytic debinding process of the feedstock is as follows: the debinding temperature is 120 ℃, the nitrogen feed rate is 120 cm3·min−1, the feed rate of nitric acid gas is 1.5 cm3·min−1, the debinding time is 6 h, and the binder removal rate is 85%. Furthermore, by using the controlling technology of the impurity content in the whole process, the relative density of the titanium alloy products can reach 95.9%, the tensile strength is 933 MPa, the bending strength is 1282 MPa, the elongation is 7.5%, and the mass fraction of C and O is 0.10% and 0.21%, respectively.
  • [1]
    蔡一湘, 陈强, 丁燕. 注射成形钛零件的研究. 粉末冶金技术, 2005, 23(6): 449 DOI: 10.3321/j.issn:1001-3784.2005.06.011

    Cai Y X, Chen Q, Ding Y. Research of injection molding titanium parts. Powder Metall Technol, 2005, 23(6): 449 DOI: 10.3321/j.issn:1001-3784.2005.06.011
    [2]
    廖赞, 缪卫东, 马嘉丽. 钛合金在生物医药领域应用现状和展望. 新材料产业, 2017(3): 19 DOI: 10.3969/j.issn.1008-892X.2017.03.006

    Liao Z, Miao W D, Ma J L. Application status and prospect of titanium alloy in biomedical field. Adv Mater Ind, 2017(3): 19 DOI: 10.3969/j.issn.1008-892X.2017.03.006
    [3]
    路新, 刘程程, 曲选辉. 钛及钛合金粉末注射成形技术研究进展. 粉末冶金技术, 2013, 31(2): 139 DOI: 10.3969/j.issn.1001-3784.2013.02.011

    Lu X, Liu C C, Qu X H. Research progresses of powder injection molding for titanium alloys. Powder Metall Technol, 2013, 31(2): 139 DOI: 10.3969/j.issn.1001-3784.2013.02.011
    [4]
    陈刚, 路新, 章林, 等. 钛及钛合金粉末制备与近净成形研究进展. 材料科学与工艺, 2020, 28(3): 98 DOI: 10.11951/j.issn.1005-0299.20200041

    Chen G, Lu X, Zhang L, et al. Research progress in powder production and near-net-shape manufacturing of titanium and its alloys. Mater Sci Technol, 2020, 28(3): 98 DOI: 10.11951/j.issn.1005-0299.20200041
    [5]
    Dehghan-Manshadi A, Bermingham M J, Dargusch M S, et al. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol, 2017, 319(1): 289
    [6]
    高文平, 吕祥鸿, 谢俊峰, 等. 苛刻环境中钛合金石油管材的抗腐蚀性能研究. 稀有金属材料与工程, 2018, 47(1): 151

    Gao W P, Lü X H, Xie J F, et al. Corrosion resistance of titanium alloy OCTG in severe environment. Rare Met Mater Eng, 2018, 47(1): 151
    [7]
    Soyama J, Oehring M, Ebel T, et al. Sintering behavior and microstructure formation of titanium aluminide alloys processed by metal injection molding. JOM, 2017, 69(4): 676 DOI: 10.1007/s11837-016-2252-z
    [8]
    Thavanayagam G, Swan J E. Optimizing hydride-dehydride Ti–6Al–4V feedstock composition for titanium powder injection moulding. Powder Technol, 2019, 355: 688 DOI: 10.1016/j.powtec.2019.07.091
    [9]
    Abu Kasim N A, Nor N H M, Ismail M H, et al. Development of porous Ti–6Al–4V dental implant by metal injection molding with palm stearin binder system. Mater Sci Forum, 2017, 889: 79 DOI: 10.4028/www.scientific.net/MSF.889.79
    [10]
    Tingskog T, Larouche F, Lefebvre L P. New titanium alloy feedstock for high performance metal injection molding parts. Key Eng Mater, 2016, 704: 118 DOI: 10.4028/www.scientific.net/KEM.704.118
    [11]
    Subaşı M, Safarian A, Karataş Ç. An investigation on characteristics and rheological behaviour of titanium injection moulding feedstocks with thermoplastic-based binders. Powder Metall, 2019, 62(4): 229 DOI: 10.1080/00325899.2019.1635305
    [12]
    Ramli M I, Sulong A B, Muhamad N, et al. Effect of sintering on the microstructure and mechanical properties of alloy titanium-wollastonite composite fabricated by powder injection moulding process. Ceram Int, 2019, 45(9): 11648 DOI: 10.1016/j.ceramint.2019.03.038
    [13]
    王健硕, 邓子玉, 崔海涛, 等. 基于Y-PSZ/Ti粉末注射成型的脱脂工艺研究. 沈阳理工大学学报, 2019, 38(5): 41 DOI: 10.3969/j.issn.1003-1251.2019.05.009

    Wang J S, Deng Z Y, Cui H T, et al. Study on degreasing process based on Y-PSZ/Ti powder injection molding. J Shenyang Ligong Univ, 2019, 38(5): 41 DOI: 10.3969/j.issn.1003-1251.2019.05.009
    [14]
    Moghadam M S, Fayyaz A, Mohammad A. Fabrication of titanium components by low-pressure powder injection moulding using hydride-dehydride titanium powder. Powder Technol, 2021, 377: 70 DOI: 10.1016/j.powtec.2020.08.075
    [15]
    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012

    Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012
    [16]
    罗铁钢, 毛新华, 符乃科, 等. 不同钛粉末的PIM烧结性能研究. 稀有金属材料与工程, 2017, 46(增刊 1): 104

    Luo T G, Mao X H, Fu N K, et al. Sintering property of different titanium powders by PIM. Rare Met Mater Eng, 2017, 46(Suppl 1): 104
    [17]
    胡凯, 邹黎明, 毛新华, 等. 射频等离子体制备球形钛粉及其在粉末注射成形中的应用. 钢铁钒钛, 2020, 41(1): 36

    Hu K, Zou L M, Mao X H, et al. Preparation of spherical titanium powder by RF plasma and its application in powder injection molding. Iron Steel Vanadium Titanium, 2020, 41(1): 36
    [18]
    German R M. 粉末注射成形. 曲选辉 译. 长沙: 中南大学出版社, 2001

    German R M. Powder Injection Molding. Transl by Qu X H. Changsha: Central South University Press, 2001
  • Related Articles

    [1]CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
    [2]LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
    [3]LI Chang, CHEN Lei-lei, QU Zong-hong, LIU Kui-sheng, LAI Yun-jin, LIANG Shu-jin. Numerical simulation study of effect of die structure on the extrusion deformation of FGH4096 alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 277-283. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080014
    [4]LIANG Yuan-long, JIANG Guo-sheng. Finite element simulation of tungsten-coated diamond/copper composites[J]. Powder Metallurgy Technology, 2019, 37(4): 283-287. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
    [5]ZHANG Ming, LIU Guo-quan, HU Ben-fu, Geng Xiao-xiao, WANG Hao. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
    [6]LI Yu, SHEN Wei, ZHAO Peng, PU Yu-ping. Finite element analysis for the yield strength of copper foam[J]. Powder Metallurgy Technology, 2017, 35(1): 3-9. DOI: 10.3969/j.issn.1001-3784.2017.01.001
    [7]Qiao Changchun, Wu Youzhi, Meng Junhu. Finite element analysis on the demolding process of micro-powder injection molding[J]. Powder Metallurgy Technology, 2015, 33(6): 437-444. DOI: 10.3969/j.issn.1001-3784.2015.06.007
    [8]Ma Yunzhu, Wang Jianning, Liu Wensheng, Liu Yuanbiao, Zhang Jiajia. Finite element simulation and optimization of forming process for tungsten-based alloys screw extrusion based on rigid-plastic model[J]. Powder Metallurgy Technology, 2015, 33(1): 42-48.
    [9]Wang Deguang, Wu Yucheng, Jiao Minghua, Yu Jianwei, Xie Ting, Yin Yanguo. Finite element simulation to influence of compacting mode on PM product properties[J]. Powder Metallurgy Technology, 2008, (2): 88-93.
    [10]Finite Element Analysis Model for P/M Driven Gears Deburring[J]. Powder Metallurgy Technology, 2001, 19(5): 293-296. DOI: 10.3321/j.issn:1001-3784.2001.05.011

Catalog

    Article Metrics

    Article views (634) PDF downloads (161) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return